OPTIMIZATION OF A SOLAR SIMULATOR FOR PLANETARY-PHOTOCHEMICAL STUDIES

Et-touhami Es-sebar1,2, Yves Bénilan1, Nicolas Fray1, Hervé Cottin1, Antoine Jolly1, and Marie-Claire Gazeau1
1 Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR 7583, CNRS, Université Paris Est Créteil and Université Paris Diderot, Institute Pierre Simon Laplace, 61 Avenue du Général De Gaulle, F-94010 Créteil Cedex, France
2 Laboratoire de Physique des Gaz et des Plasmas (LPGP), UMR 8578, CNRS, Université Paris-Sud, Bât 210, F-91405 Orsay Cedex, France; ettouhamiessebar@gmail.com

Received 2015 March 7; accepted 2015 April 23; published 2015 June 5

ABSTRACT

Low-temperature microwave-powered plasma based on hydrogen and hydrogen with noble gas mixtures are widely used as a continuous vacuum ultraviolet (VUV) source in laboratory experiments carried out to mimic the photochemistry in astrophysical environments. In this work, we present a study dedicated to optimizing such sources in terms of monochromaticity at Lyα (H(Lyα) line at 121.6 nm ~ 10.2 eV) and high spectral irradiance. We report the influence on the emission spectrum of a wide range of experimental conditions including gas composition (pure H2, pure He, and H2/He mixture), gas pressure, flow rates, and microwave power. The absolute spectral irradiance delivered by this VUV light source has been measured. With a microwave input power of 100 W, the best conditions for producing a quasi-monochromatic source are a 1% H2/He gas mixture at a total pressure of 5 mbar and a flow rate of 2 sccm. By changing the microwave input power from 30 to 120 W, H(Lyα) increases by more than one order of magnitude. A comparison between the current measurements and the solar VUV spectral irradiance is reported over 115–170 nm.

Key words: astrochemistry – plasmas – Sun: UV radiation – techniques: spectroscopic

1. INTRODUCTION

Vacuum ultraviolet (VUV) light is one of the main energetic sources driving chemical evolution occurring in planetary atmospheres and in the interstellar medium (ISM; Weber & Greenberg 1985; Ehrenfreund et al. 1997; Gazeau et al. 2007; Muñoz Caro & Schutte 2003; Ferris et al. 2005; Tran et al. 2008). Laboratory simulations of most astrophysical environments require representative VUV sources, particularly in terms of wavelength dependence and spectral irradiance. Since the 1960s (Warneck 1962; Okabe 1964; Samson 1967; Davis & Braun 1968), microwave-powered hydrogen plasmas are frequently used in laboratory experiments to simulate the energy deposition of stellar photons at the top of planetary atmospheres or in the ISM. Microwave plasma sources are simple, quite stable, and low cost. Their optically active medium can be large (up to several centimeters), and they can easily be implemented to different experimental setups. However, microwave-powered plasmas are generally not well defined since the emission spectrum depends on numerous experimental parameters (Masoud et al. 2004; Chen et al. 2014). The general assumption is that hydrogen plasmas simulate the solar irradiance spectrum (Trullhier et al. 2004; Figure 1), which is dominated by the atomic hydrogen Lyα line (H(Lyα)) at 121.6 nm, but this is not necessarily true. As shown by Cottin et al. (2003), the H(Lyα) emission could account for only 5% of the total VUV emission intensity between 100 and 200 nm. More recently, Chen et al. (2014) have shown that the contribution of H(Lyα) could range from 0% to 80% of the emission in the 115–180 nm range depending on the operating experimental conditions. Apart from the H(Lyα) line, the other intense emissions generally observed are located around 160 nm and are attributed to the Lyman band (B1Σu−X1Σg) of molecular H2. We decided to record the VUV emission spectrum of microwave-powered plasma lamps with pure H2, pure He, and H2/He gas mixtures and to study the influence of several parameters such as microwave power, gas pressure, and flow rate. Such studies have already been reported by Fozza et al. (1998) for H2 and H2/Ar as well as O2 and O2/Ar, by Masoud et al. (2004) for H2/Ne, and by Chen et al. (2014) for H2 and H2/He. However, to our knowledge, Jenniskens et al. (1993) and Cruz-Díaz et al. (2014) are the only two references that compare the spectral irradiance of a microwave-powered hydrogen lamp with a natural astrophysical light source (i.e., the diffuse medium interstellar and dense molecular cloud radiation field within the 90–260 nm range). Interpretations of laboratory simulations depend on quantitative values in order to be compared with theoretical and/or observational data. To provide meaningful information, the spectral irradiance of the VUV sources used in the laboratory has to be accurately compared with the VUV field present in astrophysical environment. In this paper, we present a detailed description of our experimental setup and the results leading to the choice of an accurate solar simulator in terms of spectral irradiance to be useful for photochemical studies. To further characterize our microwave discharge plasma, we have also measured the absolute spectral irradiance over the 115–170 nm range using the chemical actinometric method.

2. EXPERIMENTAL SETUP

The experimental setup is shown in Figure 2. The plasma is produced in a quartz tube (8 mm internal diameter, 10 mm external diameter, and 20 cm length) in which H2, He, or H2/He mixture are introduced. The discharge is excited using a McCarrol cavity (Optos Instruments, Inc.) connected to a 2.45 GHz microwave generator (SAIREM) with a maximum output of 300 W. The discharge tube is cooled by air flow to keep a constant temperature. The gas flow rate can be fixed and controlled by two mass flow controllers (MKS 1179B): one between 0.2 and 76 sccm (standard cm3 min−1) for He and one between 0.2 and 6 sccm for H2. In the case of H2/He mixtures, changing the flow rates of both gases varies the percentage of H2 in He. The gas pressure, ranging from 0.7 to 80 mbar, is
measured using an MKS pressure gauge (model MKS 722A). Before starting measurements and allowing gas flow, the plasma tube is evacuated through a turbo-molecular pump backed by a rotary mechanical pump to reach a vacuum of about 10⁻⁶ mbar. Since the VUV emission decreases at higher pressures, flow rates are limited to 76 sccm.

The VUV emission spectrum from the microwave-powered plasma is recorded between 115 and 170 nm using a VUV spectrometer (Horiba-Jobin-Yvon, H20-UVL) placed longitu-dinally to the discharge tube. The spectrometer is isolated from the plasma source by a MgF₂ window with a cutoff around 115 nm and pumped by a turbo-molecular pump to keep a pressure of about 10⁻⁷ mbar. The VUV light is collimated with a concave mirror, directed to a 1200 g mm⁻¹ grating, and recorded by a VUV photomultiplier tube (Hamamatsu R-8486). The VUV emission is focalized on the entrance slit situated at a distance of 20 cm from the center of the discharge. A computer controls scanning and acquisition of the data. All spectra are recorded with a spectral resolution of 0.06 nm and a scan rate of 0.3 nm s⁻¹. Transmission decrease has been observed during the experiments requiring frequent cleaning of the MgF₂ window.

In addition to the VUV apparatus described above, a Fourier transform infrared (FTIR) spectrometer (Bruker Equinox 55) is used to monitor the CO infrared band during the actinometry experiments. Details of the setup can be found elsewhere (Romanzin et al. 2010). In short, the microwave discharge plasma light source is connected to a multi-reflection white-cell containing CO₂. Some CO is produced by the CO₂ photolysis, and its absorbance is followed by infrared spectroscopy. Each infrared spectrum being averaged over 10 minutes, the spectral resolution is 0.5 cm⁻¹.

3. RESULTS

3.1. Influence of Plasma Parameters on the VUV Emission Spectrum

3.1.1. VUV Spectra in Pure H₂, He, and 1% H₂/He Mixture

VUV spectra from microwave discharge with pure H₂, pure He, and a mixture of 1% H₂/He are shown in Figures 3(a)–(c), respectively. Results are presented to illustrate VUV emissions between 115 and 200 nm. The observed atomic lines and molecular bands are labeled in Table 1. The spectrum of pure H₂ discharge (Figure 3(a)) has two characteristic features: (i) a weak line near 121.6 nm due to atomic H (Lyα) and (ii) a large band emission between 150 and 170 nm due to the Lyman band of molecular H₂ (B²Σ_u⁺−X²Σ_g⁻).

In pure He (Figure 3(b)), the VUV spectrum is strongly dominated by atomic lines of H (Lyα) and N I emissions at 149.4 and 174.5 nm. The molecular band (B²Σ_u⁺−X²Σ_g⁻) of H₂ is also observed, but its contribution is smaller compared to pure H₂ (Figure 3(a)) or 1% H₂/He (Figure 3(c)). Other atomic lines of N I (119.9 and 124.3 nm) and O I (130.5 nm) are also identified in the spectrum as well as C I lines at 165.7 and 193.1 nm. The emissions of H, C, N, and O lines in pure He plasma can be explained by the presence of trace impurities in the He gas cylinder and/or by small air leaks in our experiments. The observed atomic lines are similar to those seen by Kurucz et al. (2001) using high-pressure micro-hollow discharge in He. Emission of H (Lyα) is also observed in pure He by Fuchs et al. (1995) using a low-frequency He discharge lamp and by Morozov et al. (2008) in pure Ne. Aside from the intense H (Lyα) emission, Fedenev et al. (2004) have observed the nitrogen lines from a radiation source using pure He excited by an electron beam. The emission of those atomic lines in pure rare gas discharges is due to the role played by metastable species such as He* and H₂* that can efficiently transfer their energy to molecular and atomic species (Motret et al. 1985; Kurucz et al. 2001; Rahman et al. 2004).

Figure 3(c) illustrates the main spectral features using the microwave plasma with 1% H₂/He. The emission spectrum is similar to that obtained in pure H₂ with the H (Lyα) line and H₂ molecular bands. However, the contribution of the H (Lyα) line to the overall spectra is enhanced while the H₂ band is reduced compared to the pure H₂ spectrum. Weak atomic lines of O I (130.5 nm), N I (149.4 and 174.5 nm), and C I (193.1 nm) are also observed. Note that N I, O I, and C I lines are not observed in the pure H₂ spectrum because of the absence of energy transfer by metastable He* and H₂* (Figure 3(a)). The role of metastable He* and H₂* is particularly evident for the increase of the H (Lyα) line (Motret et al. 1985; Kurucz et al. 2001; Rahman et al. 2004).

As already observed by Warneck (1962), Davis & Braun (1968), Chen et al. (2011), Cook et al. (2014), and Chen et al. (2014), it turns out that the mixture of H₂ with He seems to be the best alternative to obtain a spectrum dominated by the H (Lyα) line needed to reproduce the solar spectrum. In the following, mixtures of H₂ in He will be further characterized by testing the effect of the percentage of H₂ in He, the total pressure (p), the flow rate (Q), and finally the (Q/p) ratio on the VUV emission spectrum.

3.1.2. Effect of H₂ Addition in He

VUV emission spectra from H₂/He microwave plasma have been recorded with various percentages of H₂ in He. The amount of H₂ has been determined by setting the flow rates of both gases; the total pressure and the microwave input power have been kept constant at 4.7 mbar and 100 W, respectively. The values of the ratio between the flow rate and the pressure, noted as (Q/p) here, were kept in the asymptotic high residence time regime (see Section 3.1.4). Figure 4(a) shows that the H (Lyα) emission integrated between 120 and 124 nm varies with the percentage of H₂ added in He, and it reaches a maximum at around 1%. In the case of 10% H₂ in He, the integrated value has decreased by a factor of three compared to the peak value at...
H₂ concentrations in He increase. However, the emission of H (Lyα) in H₂/He mixture is strongly related to the quenching process with He. When the quenching exceeds the production of H atoms, H(Lyα) emission drops (Masoud et al. 2004). Self-absorption and trapping of the H(Lyα) can also contribute to reducing the emission at high H₂ concentration in He (Masoud et al. 2004). In conclusion, while the overall integrated intensity increases with the percentage of H₂ in He, the H(Lyα) maximum intensity is obtained for 1% of H₂ in He and the maximum contribution of H(Lyα) relative to the overall intensity is observed for even lower percentages. Therefore a percentage as low as 0.25% H₂ in He would optimize the contribution of H(Lyα) to the overall emission of our VUV lamp in the present operating conditions (4.7 mbar, 100 W).

3.1.3. Influence of the Pressure

To study the influence of the gas pressure, we have considered a mixture of 1% H₂/He and an unchanged discharge power of 100 W. We focused our attention on the contribution of H(Lyα) relative to the overall emission (i.e., between 115 and 170 nm). As can be seen from Figure 5(a), the integrated emission of H(Lyα) slightly increases by about 16% from low pressures up to about 10 mbar and then decreases considerably for higher pressure values. The total emission slowly but continuously decreases with increasing pressure. The intensity of the H(Lyα) emission line at low pressure is related to an increase in electron densities that enhance the production of H atoms. At higher pressure, the formation of H₂ by recombination of H atoms (in volume and on the wall), however, starts to overcome the production, leading to a decrease of H(Lyα) (Fozza et al. 1998). Moreover, with increasing gas pressure, non-radiative quenching processes of He* metastable species considerably reduce the H(Lyα) emission. Similar studies have been reported by Kurunczi et al. (2001), who studied a microhollow cathode plasma in He with the presence of H₂, O₂, and N₂ impurities and by Masoud et al. (2004) in the case of a cylindrical dielectric barrier discharge generated in a Ne/H₂ mixture. Besides quenching processes, the reduction of H(Lyα) emission at high pressure is also due to the radiation trapping as discussed by Woodworth et al. (2001), Masoud et al. (2004), and Titus et al. (2009).

Figure 5(b) shows the integrated emissions of H(Lyα) relative to the entire emission (i.e., 115–170 nm) as a function of the total pressure. Since at low pressure the total emission decreases more rapidly than H(Lyα) emission, the contribution of H(Lyα) goes through a maximum. The optimized conditions are thus reached when the total pressure is around 15 mbar, but the contribution of H(Lyα) is almost constant below 20 mbar.

Table 1

Summary of the Observed Atomic Lines and Molecular Band from Pure H₂, Pure He, and 1% H₂/He Microwave Plasma Source

<table>
<thead>
<tr>
<th>Identified Species</th>
<th>Wavelength (nm)</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N I</td>
<td>119.9</td>
<td>2p^2 3s^2-3p^2</td>
</tr>
<tr>
<td>H I</td>
<td>121.6</td>
<td>2p^0 1s^2</td>
</tr>
<tr>
<td>N I</td>
<td>124.3</td>
<td>2p^2 3p^3-3d^3</td>
</tr>
<tr>
<td>O I</td>
<td>130.5</td>
<td>2p^3 3p^3-3s^3</td>
</tr>
<tr>
<td>N I</td>
<td>149.4</td>
<td>2p^2 3p^3-3p^3</td>
</tr>
<tr>
<td>C I</td>
<td>165.7</td>
<td>2p^3 3p^3-3p^3</td>
</tr>
<tr>
<td>N I</td>
<td>174.5</td>
<td>2p^3p^0 3s^1p^0</td>
</tr>
<tr>
<td>C I</td>
<td>193.1</td>
<td>2p^1 3d^3-3s^1p^0</td>
</tr>
<tr>
<td>H₂(β'∑α-α'∑α)</td>
<td>150–170</td>
<td>B'∑α-α'∑α</td>
</tr>
</tbody>
</table>

Note: See Figure 3 for experimental conditions.

1% of H₂. However, Figure 4(a) also shows that the integrated emission between 115 and 170 nm increases continuously with the percentage of H₂ in He. Then, the contribution of the H (Lyα) line emission to the overall spectrum can be calculated by dividing the integrated flux between 120 and 124 nm to the integrated flux between 115 and 170 nm. As shown in Figure 4(b), the contribution of H(Lyα) line intensity relative to the overall spectrum increases to reach a maximum of about 32% for (0.25 ± 0.05)% of H₂ in He and then decreases below 10% when the amount of H₂ in He exceeds 4%. The rise of H (Lyα) line intensity is related to an increase in H atoms since...
measurements, the H₂ amount added in He is kept at 1%. The partial
for the maximum contribution of H between 115 and 170 nm. The gray region is the optimum pressure conditions between 115 and 170 nm as a function of the H₂ concentration added in He. (b) The H(Lyα) contribution (normalized to the entire emission between 115 and 170 nm) as a function of the H₂ percentage in He. For all measurements, the total pressure is constant at 4.7 mbar and the mean discharge power is 100 W. A polynomial fit has been added to the data to clarify the presentation. The Astrophysical Journal Supplement Series, 218:19 (9pp), 2015 June

![Figure 4](image.png)

Figure 4. (a) Integrated emission of H(Lyα) in the range of 120–124 nm and total emission over 115–170 nm as a function of the H₂ concentration added in He. (b) The H(Lyα) contribution (normalized to the entire emission between 115 and 170 nm) as a function of the H₂ percentage in He. For all measurements, the total pressure is constant at 4.7 mbar and the mean discharge power is 100 W. A polynomial fit has been added to the data to clarify the presentation.

![Figure 5](image.png)

Figure 5. (a) Effect of the pressure on the integrated emission of H(Lyα) line between 120 and 124 nm, and total emissions in the range of 115–170 nm emitted from the microwave plasma in H₂/He mixtures. (b) Contribution of the integrated emission of H (Lyα) relative to the total integrated emission between 115 and 170 nm. The gray region is the optimum pressure conditions for the maximum contribution of H(Lyα) emission. For all the series of measurements, the H₂ amount added in He is kept at 1%. The partial flow rates of H₂ and He are 0.7 and 70 sccm, respectively. The mean discharge power is settled at 100 W.

3.1.4. Influence of the Flow Rate and Q/p Ratio

The role of the flow rate cannot be ignored in the characterization of the microwave plasma emission (Masoud et al. 2004). To study the contribution of H(Lyα), integrated between 120 and 124 nm relative to the spectral range over 115–170 nm, the most suitable parameter is the ratio (Q/p) between the flow rate and the measured pressure because of its correlation to the residence time of the gas inside the discharge tube (Es-sebbar et al. 2009). Flow rates between 2 and 40 sccm have been studied together with the gas pressure varying from 1 to 47 mbar. For all measurements, the percentage of H₂ in He was 2% and the power was settled at 100 W. Various values of Q/p were obtained by changing the pressure (p) for different flow rates (Q). Results shown in Figure 6 indicate that the relative contribution of H (Lyα) increases with Q/p to reach a maximum and finally it decreases at high Q/p values. By increasing flow rates, the contribution of H(Lyα) rapidly decreases and the maximum is shifted to higher Q/p values. After reaching a maximum, the relative H(Lyα) contribution is independent on the Q/p parameter. Note that the optimum is always obtained for a pressure around 5 mbar. The flow rate should be kept as low as possible, and we thus recommend a flow rate of the order of 2 sccm, i.e., Q/p ratio of 0.4 sccm mbar⁻¹, to obtain the most monochromatic source. These observations can be explained by the role of the mean residence time in promoting H(Lyα) emission. The residence time is correlated to the Q/p parameter as well as the gas temperature (Es-sebbar et al. 2009). At short residence time (i.e., high Q/p values), the contribution of H(Lyα) increases when the residence time gets longer because H atom column density increases. However, further increase in the residence time (i.e., lower Q/p values) allows more H atom recombination, leading to a decrease in the H(Lyα) emission.

![Figure 6](image.png)

Figure 6. Contribution of the integrated emission of H(Lyα) relative to the total integrated emission between 115 and 170 nm. For all the series of measurements, the H₂ amount added to He was 2%. The parameter Q/p is determined by changing the pressure (p) for different flow rates (Q).

3.2. Chemical Actinometry, Irradiance, and Spectral Irradiance

To fully characterize our 1% H₂/He microwave-powered plasma light source, we have determined the VUV spectral irradiance (in ph cm⁻² s⁻¹ nm⁻¹) using chemical actinometry. Spectral irradiance is reported only in the range of 115–170 nm, the spectral domain extensively designed to mimic the solar radiation to study the photochemistry in astrophysical interests.
3.2.1. Chemical Actinometry

Chemical actinometry is a non-invasive diagnostic method that is easy to implement, which is generally used to determine the irradiance (in units of ph cm\(^{-2}\) s\(^{-1}\)). The irradiance of a lamp can be derived from the temporal production rate of a compound issued from the VUV photo-dissociation of an actinometer (Kuhn et al. 1989). Molecular oxygen (O\(_2\)), di-nitrogen oxide (N\(_2\)O), and carbon dioxide (CO\(_2\)) are commonly used since their photo-dissociation cross-sections in the VUV range are well known, as is the quantum yield of production of their photoproducts (O\(_3\), NO, and CO, respectively). The advantage of CO\(_2\) compared with O\(_2\) or N\(_2\)O is that the formation of CO is taking place after a very short irradiation time (i.e., a few minutes; Romanzin et al. 2010). Therefore, we used CO\(_2\) to derive the irradiance from the CO production rate (measured by FTIR spectroscopy) as a function of the irradiation time. If we assumed that the VUV photolysis is exclusively due to Ly\(_\alpha\) photons, the derivation of the irradiance is straightforward and has already been presented in detail in Romanzin et al. (2010). This first method will be referred to here as the “monochromatic method.”

In the present study, having previously measured the VUV spectrum of our 1% H\(_2\)/He microwave-powered lamp (\(\Phi_\lambda^{\text{relative}}\)), we have modified the equations reported by Romanzin et al. (2010) in order to take into account the CO\(_2\) photolysis by any absorbed photons. We then used a new equation allowing us to determine the absolute spectral irradiance (\(\Phi_\lambda^{\text{absolute}}\) in units of ph s\(^{-1}\) cm\(^{-2}\) nm\(^{-1}\)):

\[
\Phi_\lambda^{\text{absolute}} = \Phi_\lambda^{\text{relative}} \frac{V}{L} \frac{dN(\text{CO})}{dt} \int \Phi_\lambda^{\text{relative}}(\lambda) \sigma_\lambda d\lambda,
\]

where \(dN(\text{CO})/dt\) is the temporal evolution of the CO column density during the photolysis (in molecules cm\(^{-2}\) s\(^{-1}\)), \(V\) is the volume of the infrared cell in which the CO\(_2\) photolysis takes place (\(V = (3042 \pm 3)\) cm\(^3\)), \(L\) is the infrared path length (\(L = 1040\) cm), and \(\Phi_\lambda^{\text{relative}}\) is the emission spectrum of the lamp (in nm\(^{-1}\)) that has been previously normalized to unity (\(\int \Phi_\lambda^{\text{relative}}(\lambda) d\lambda = 1\)). The parameter \(S\) is the area of the MgF\(_2\) output windows of the lamp (1 cm\(^2\)), and \(\eta_\lambda\) is the quantum yield of CO production from CO\(_2\) photolysis, which is assumed to be equal to unity. The parameter \(\varepsilon_\lambda\) is the fraction of the photons flux absorbed by CO\(_2\), which is given through the Beer–Lambert law:

\[
\varepsilon_\lambda = 1 - \exp(\sigma_\lambda l p),
\]

where \(\sigma_\lambda\) is the absorption cross section of CO\(_2\) (in units of atm\(^{-1}\) cm\(^{-1}\); Yoshino et al. 1996; Venot et al. 2013), \(l\) is the optical path length of the absorption cell, and \(p\) is the gas pressure of CO\(_2\). The irradiance of the light source, \(I_\lambda^{\text{poly}}\) (in units of ph cm\(^{-2}\) s\(^{-1}\)) can be then calculated through the integration of the spectral irradiance:

\[
I_\lambda^{\text{poly}} = \int \Phi_\lambda^{\text{absolute}}(\lambda) d\lambda.
\]

Using this new method, the fact that the light source is polychromatic is taken into account for the first time. It is referred to here as the polychromatic method.

Figure 7 compares the measured and calculated spectra of CO produced by dissociation of CO\(_2\) using our microwave-powered plasma. The synthetic spectra have been calculated using spectroscopic parameters taken from the GEISA database (Jacquinet-Husson et al. 2011). To avoid absorption saturation of the CO band, 0.8% of CO\(_2\) was mixed with 1 bar of N\(_2\). Line broadening due to molecular nitrogen ensures the linear dependence of the absorbance relative to column densities up to about 2.5 \times 10\(^{17}\) molecules cm\(^{-2}\) (red symbols). The time between each experiment is about one hour.

3.2.2. Absolute VUV Irradiance and Spectral Irradiance

Figure 8 presents the results of four experiments performed under the same experimental conditions with one-hour intervals using the following parameters: 1% H\(_2\)/He \(p = 4.7\) mbar, 100 W, and flow rates of 0.77/70 sccm (H\(_2\)/He). Up to the saturation limit, a linear evolution of the CO column density is observed; thus, the slope value, \(dN(\text{CO})/dt\), can be determined. The absolute VUV spectral irradiance \(\Phi_\lambda^{\text{absolute}}\) can then be calculated using Equation (1). By comparing experiments 1 and 4, we observe
that the slopes decrease by about a factor of two, which is the result of a significant decrease of spectral irradiance over a lapse of time of a few hours. The corresponding irradiance integrated between 115 and 170 nm drops from 9.1 to $4.3 \times 10^{14} \text{ ph s}^{-1} \text{ cm}^{-2}$. This is related to the deposit of traces of species adsorbed on the MgF$_2$ window leading to a decrease of 50% of transmission after eight hours of irradiation experiments (Figure 9). A similar decrease of the transmission by more than one order of magnitude has already been observed by Warneck (1962) and Jenniskens et al. (1993). The nature of this deposit has not been found. Nevertheless, this deposit can be easily removed by cleaning the window with acetone and methanol solvents. The following measurements have been performed just after such cleaning.

In Table 2, the production rates of CO as a function of the microwave discharge power are reported, as well as irradiances calculated either with the “polychromatic” or the “monochromatic” method. Using the first approach, we have noted $I_{115-124 \text{ nm}}$ and $I_{115-170 \text{ nm}}$ irradiances calculated from the integration of the spectral irradiance Φ_{λ} between 115 and 124 nm and 115 and 170 nm, respectively. The results obtained with the second approach, noted as $I_{\text{Ly} \alpha}$, are given for comparison.

From Table 2, one can note that an increase in the microwave power from 30 to 120 W leads to an increase by almost one order of magnitude of the CO production rates. A similar increase is observed for the $I_{115-124 \text{ nm}}$ and $I_{115-170 \text{ nm}}$ irradiances. Such an increase of irradiance with the microwave power has already been observed by Cottin et al. (2003). Moreover, the microwave power has an effect on the shape of the spectral irradiance Φ_{λ}. Indeed, we observe that the H ($\text{Ly} \alpha$) contribution is increased by a factor of four as shown by the ratio $I_{115-124 \text{ nm}}$ versus $I_{115-170 \text{ nm}}$. This is related to an increase in the average electron density that enhances the excitation rate of production of the hydrogen-excited species responsible for the VUV emissions. These considerations then have to be taken into account when microwave-powered lamps are used in photochemical studies, particularly when they are supposed to accurately simulate the VUV photons (mainly H ($\text{Ly} \alpha$)) present in specific astrophysical interests (ISM or planetary environment). More importantly, the results of Table 2 show that the values of $I_{\text{Ly} \alpha}$ are systematically overestimated by a factor of ~ 2.5 compared to the $I_{115-170 \text{ nm}}$. This is later issued from a rigorous calculation using the “polychromatic method” that takes into account the entire spectrum of the lamp. In conclusion, we confirm that knowledge of the VUV emission spectrum is essential for determining accurate values of the irradiance of the lamp, which finally allows us to obtain quantitative data from the laboratory simulations.

4. DISCUSSION

4.1. Comparison with Previous VUV Irradiance

Table 3 shows quantitative measurements of photon flux (ph s^{-1}) or irradiance ($\text{ph s}^{-1} \text{ cm}^{-2}$) performed on H$_2$(or mixtures of H$_2$ in noble gas) microwave-powered lamps used in various operating conditions in terms of pressure and microwave power. The current table is an updated version of the one published by Rajappan et al. (2010). With the exception of the present work and regardless of the actinometer used, the respective photons flux or irradiance have been determined using the “monochromatic method.” As discussed in Section 3.2.2, this method leads to inaccurate values that are higher than the real output of the sources.

Results on lamps operating with mixtures of H$_2$ in He (Warneck 1962; Davis & Braun 1968) and in Ar (Okabe 1964; Romanzin et al. 2010), which assumed that all photons are emitted as H($\text{Ly} \alpha$) photons. Measurements have been performed under experimental conditions of 1%H$_2$/He gas, 4.7 mbar, and 0.7/70 sccm (H$_2$/He). Actinometry experiments are performed under 0.8% CO$_2$/N$_2$ (5.3/667 mbar).

![Figure 9. Transmission of the MgF$_2$ windows measured before (black) and after (red) eight hours of irradiation.](image-url)
Table 3
Photon Flux (10^{14} ph s$^{-1}$) or Irradiance (10^{14} ph cm$^{-2}$ s$^{-1}$) Reported in the Literature Using Various Microwave-powered Sources and the Respective Method of Determination

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of UV Lamp Gas/ Gas Mixture</th>
<th>Conditions: Pressure (mbar) and Power (W)</th>
<th>UV Spectrum</th>
<th>Method of Photon Irradiance Measurement</th>
<th>Photon Flux (10^{14} ph s$^{-1}$) or Irradiance (10^{14} ph cm$^{-2}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wameck (1962)</td>
<td>Flow lamp: 38% H$_2$ in He</td>
<td>0.2 mbar, 125 W</td>
<td>Relative Lyα and 160 nm</td>
<td>Photoelectric effect on Ni photocathode</td>
<td>20 *</td>
</tr>
<tr>
<td>Okabe (1964)</td>
<td>Sealed off: 10% H$_2$ in Ar</td>
<td>1.33 mbar, 60 W</td>
<td>Relative Lyα</td>
<td>CO$_2$ actinometry</td>
<td>3 *</td>
</tr>
<tr>
<td>Davis & Braun (1968)</td>
<td>Flow lamp: 2% H$_2$ in He</td>
<td>1.33 mbar, 125 W</td>
<td>No spectrum</td>
<td>CO$_2$ actinometry</td>
<td>7.6 *</td>
</tr>
<tr>
<td>Yamashita (1975)</td>
<td>Plasma jet torch: 3.2% H$_2$ in Ar</td>
<td>6 mbar, 4000 W</td>
<td>Relative Lyα</td>
<td>*Thermal detector</td>
<td>20 **</td>
</tr>
<tr>
<td>Hagen et al. (1979)</td>
<td>Flow lamp: Pure H$_2$</td>
<td>(0.1–0.3) × 10$^{-3}$ mbar</td>
<td>Relative 160 nm</td>
<td>CO$_2$ actinometry</td>
<td>15 *</td>
</tr>
<tr>
<td>Gerakines et al. (2000)</td>
<td>Flow lamp: Pure H$_2$</td>
<td>60–75 mbar, 50 W</td>
<td>No spectrum</td>
<td>O$_2$ photolysis</td>
<td>8.5 *</td>
</tr>
<tr>
<td>Baratta et al. (2002)</td>
<td>Flow lamp: Pure H$_2$</td>
<td>Data not available</td>
<td>No spectrum</td>
<td>O$_2$ photolysis</td>
<td>(0.01–0.5) ** *</td>
</tr>
<tr>
<td>Cottin et al. (2003)</td>
<td>Flow lamp: Pure H$_2$</td>
<td>1333 mbar, 50 W</td>
<td>Relative Lyα and 160 nm</td>
<td>O$_2$ photolysis</td>
<td>5 ** *</td>
</tr>
<tr>
<td>Rajappan et al. (2010)</td>
<td>Flow lamp: 10% H$_2$/Ar</td>
<td>1.33 mbar, 60 W</td>
<td>No spectrum</td>
<td>N$_2$O actinometry</td>
<td>10 **</td>
</tr>
<tr>
<td>Romanzin et al. (2010)</td>
<td>Flow lamp: 2% H$_2$/He</td>
<td>4 mbar, 200 W</td>
<td>No spectrum</td>
<td>CO$_2$ actinometry</td>
<td>\sim62 *</td>
</tr>
<tr>
<td>Cook et al. (2014)</td>
<td>Flow lamp: 0.68% H$_2$/He</td>
<td>1 mbar, 22–23 W</td>
<td>No spectrum</td>
<td>VUV-sensitive photodiode with sapphire window</td>
<td>\sim3.14 × 10$^{-3}$ **</td>
</tr>
<tr>
<td>This work</td>
<td>Flow lamp: 1% H$_2$/He</td>
<td>4.7 mbar, 30–120 W</td>
<td>Absolute spectrum│</td>
<td>CO$_2$ actinometry</td>
<td>(1.15–10.8) **</td>
</tr>
</tbody>
</table>

Notes. Results of the irradiance in the current work are presented in the last line, taking into account the polychromatic method.

a Irradiance is determined also with a platinium light detector.

b Irradiance is determined also with a NIST calibrated photodiode.
Yamashita (1975) are reported. The only relative spectra of some of these lamps show either a contribution of both Lyα and 160 nm lines or an almost unique intense line at Lyα 700 nm. The second spectrum of the lamp presented a large Lyman band of H_2 and a large Lyman band of Σ_{1u}^+ excimers with H$_2$, N$_2$, and O$_2$ impurities. In H$_2$/He microwave discharges, analysis of mean H (Lyα) and H$_2$ ($B^1\Sigma_u^+-X^1\Sigma_g^+$) spectral features has revealed a dependence on the H$_2$ concentration. Even if the maximum H (Lyα) line emission over the entire spectrum in 115–170 nm is obtained around 0.3% H$_2$ in He, stable operation conditions for plasma sources to produce quasi-monochromatic VUV light were found in 1% H$_2$/He mixture at a pressure near 5 mbar and flow rate of 4 sccm (H$_2$/He). The chemical actinometry method using CO$_2$ photolysis associated with FTIR spectroscopy has been used to measure the absolute spectral irradiance. Results were thoroughly compared to the available data in the literature and the solar spectrum. With appropriate operating conditions, the spectral irradiances of a H$_2$/He plasma source range from 1.15 × 1015 to 1.08 × 1015 ph cm$^{-2}$ cm$^{-2}$ s$^{-1}$, depending on the microwave discharge power. These values are consistent with the data of the literature.

4.2. Comparison with Solar VUV Spectral Irradiance

Figure 10 presents a comparison between the solar VUV spectral irradiance at 1 AU (Atlas 3 of Thuillier et al. 2004) with the emission spectrum of two microwave-powered lamps used in the present study. The first one has been acquired at a flow rate of 70 sccm and has been quantitatively calibrated by chemical actinometry. The spectral irradiance at H (Lyα) of our lamp is 700 times higher than the solar value, which allows us to study long timescale chemical processes. Nevertheless, with this large value for the gas flow rate, the contribution of H (Lyα) is quite low (see Figure 6), and it is lower than that of the solar one (see Figure 10). The second spectrum of Figure 10 was acquired with a total flow rate of 5 sccm and a pressure of 4 mbar, which corresponds to the maximum of the H (Lyα) contribution obtained in this study (see Figure 6). In that case, the shape of the solar spectra is well reproduced, and we can claim that our lamp, used under these conditions, is a good simulator of the solar spectra in the 115–170 nm range. Unfortunately, this last spectrum has not been calibrated by the chemical actinometry.

5. CONCLUSION

We have reported measurements of VUV emissions, photons flux, and spectral irradiance from microwave plasmas generated in H$_2$, He pure gases, and H$_2$/He mixture. In pure H$_2$, the mean feature emissions are H (Lyα) and a large Lyman band of H_2 ($B^1\Sigma_u^+-X^1\Sigma_g^+$). In pure He, the spectra are dominated by the impurity lines of H (Lyα), N, O, and C emissions rather than from energy transfer between the He* metastables and He$_2^*$ excimers with H$_2$, N$_2$, and O$_2$ impurities. In H$_2$/He microwave discharges, analysis of mean H (Lyα) and H$_2$ ($B^1\Sigma_u^+-X^1\Sigma_g^+$) spectral features has revealed a dependence on the H$_2$ concentration.
astrophysical media. Thus, this work significantly improves a detailed characterization of a microwave plasma source based on H₂ in terms of VUV flux and spectral irradiance. Our measurements provide a complete analysis of VUV photon flux. In planetary atmosphere and ISM laboratory simulation experiments, the control of the absolute VUV spectral irradiance is a crucial parameter. Therefore, the quantitative measurements presented in this article provide a new step that allows the optimization of the conditions used for microwave-powered lamps and finally achieves a better understanding of the chemistry in such environments.

We gratefully acknowledge the French Space Agency (Centre National d’Etudes Spatiales, CNES), the Ile de France Region (SESAME grant), and the French National Program of Planetary Sciences (PNP) for their financial support of the SETUP program. The authors gratefully acknowledge the CNES and the IPSL for their financial support in the frame of the EXPOSE International Space Station Program. E.E. thanks Université Paris Est Créteil (UPEC) for providing financial support.

REFERENCES

Chen, Y.-J., Chu, C.-C., Lin, Y.-C., et al. 2011, AdG, 25, 259
Davis, D., & Braun, W. 1968, OptP, 7/10, 2071
Es-sebbar, E., Benilan, Y., Jolly, A., & Gazeau, M.-C. 2009, JPhD, 42, 135206
Fuchs, C., Goetzberger, O., Henck, R., & Fogarassy, E. 1995, APhA, 60, 505
Kuhn, H. J., Braslavsky, S. E., & Schmidt, R. 1989, PAPCh, 61, 187
Masoud, N., Martus, K., & Becker, K. 2004, IJMSp, 233, 395
Motret, O., Poversle, J. M., & Stevefelt, J. 1985, JChPh, 83, 1095
Okabe, H. J. 1964, JOSA, 54, 478
Rajappan, M., Buttner, M., Cox, C., & Yates, J. T., Jr. 2010, JPCA, 114, 3443
Vuitton, V., Doussin, J.-F., Benilan, Y., Raulin, F., & Gazeau, M.-C. 2006, Icar, 185, 287
Warneck, P. 1962, OptP, 1, 721
Yamashita, I. 1975, JaJAP, 14, 70

9