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ABSTRACT

The updated 2009 edition of the spectroscopic database GEISA (Gestion et Etude des
Informations Spectroscopiques Atmosphériques; Management and Study of Atmospheric
Spectroscopic Information) is described in this paper. GEISA is a computer-accessible
system comprising three independent sub-databases devoted, respectively, to: line
parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical
and optical properties of atmospheric aerosols. In this edition, 50 molecules are involved
in the line parameters sub-database, including 111 isotopologues, for a total of 3,807,997
entries, in the spectral range from 10~° to 35,877.031 cm™ .

The successful performances of the new generation of hyperspectral sounders depend
ultimately on the accuracy to which the spectroscopic parameters of the optically active
atmospheric gases are known, since they constitute an essential input to the forward
radiative transfer models that are used to interpret their observations. Currently, GEISA is
involved in activities related to the assessment of the capabilities of IASI (Infrared
Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) on board the
METOP European satellite through the GEISA/IASI database derived from GEISA. Since the
Metop-A (http://www.eumetsat.int) launch (19 October 2006), GEISA is the reference
spectroscopic database for the validation of the level-1 IASI data. Also, GEISA is involved
in planetary research, i.e., modeling of Titan’s atmosphere, in the comparison with
observations performed by Voyager, or by ground-based telescopes, and by the instru-
ments on board the Cassini-Huygens mission.

GEISA, continuously developed and maintained at LMD (Laboratoire de Météorologie
Dynamique, France) since 1976, is implemented on the IPSL/CNRS (France) “Ether”
Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived
spectroscopic data can be handled through general and user friendly associated manage-
ment software facilities. More than 350 researchers are registered for on line use of GEISA.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction’

Spectroscopic remote sensing is an indispensable tool of
modern meteorology. It is used to investigate climate change
and provide an improved understanding of the different
phenomena driving an atmospheric system in order to
predict its past and future evolution. In particular, spectrally
highly resolved radiances measured by powerful observa-
tional techniques such as ground-, aircraft-, balloon-, or
satellite-based sensors enable global monitoring of atmo-
spheres, provide a wealth of information about its actual
state. The corresponding sensors have been improved sig-
nificantly in recent years. Currently, there are many satellite-
based instruments recording high quality spectra in order to
understand the atmospheric state in great detail. Planetary
examples include the recent Mars Express (http://www.
esa.int/SPECIALS/Mars_Express/index.html), Venus Express
(http://www.esa.int/esaMI/Venus_Express/) and Cassini-
Huygens missions (http://www.esa.int/SPECIALS/Cassini-
Huygens/index.html), studying the terrestrial planets and
Jupiter, Saturn and Titan, respectively. Numerous space-
based missions continually provide a very large number of
spectral observations which produce new revelations in
planetology.

For remote sensing of astronomical objects, an essential
prerequisite is high accuracy forward radiative transfer
modeling. This in turn requires extensive knowledge of both
the fundamental spectroscopic parameters of atmospheric
constituents and the equations governing the propagation of

T Acronyms used in the text are documented in Appendix A.

radiation through the atmosphere. Numerous physical phe-
nomenon that influence the radiative transfer of a planet
can be discerned and often measured from the variation of
specific spectral features. As a consequence, spectroscopy is
at the root of modern planetology, enabling us to determine
the physical properties of planets remotely. Generally,
forward models used in such studies are generated from
line-by-line codes. Their accuracy is affected in many ways,
and uncertainty in the spectroscopic information is one of
the greatest impacts.

During second half of the 20th century, the synergy
between the simultaneous development of new technologies
(high speed processing with computers, high-resolution
laboratory facilities, quantum-mechanical treatment in
theoretical spectroscopy, etc.), provided the means to
interpret a multitude of long-path atmospheric transmis-
sions by performing radiance calculations for numerous
scenarios. As a result, the first standardized spectroscopic
database, the so-called “AFGL tape”, oriented towards the
Earth’s atmosphere, was initiated in 1973, at Air Force
Geophysics Laboratory USA, by McClatchey et al. [1] and
Garing and McClatchey [2]. This early database was
limited to the strongest infrared absorbers (H,O, CO,,
03, N0, CO, CHy, and O,) in the terrestrial atmosphere. It
contained approximately 100,000 transitions.

In 1976, the ARA group at LMD (http://ara.abct.Imd.
polytechnique.fr) initiated a similar effort with the develop-
ment of GEISA [3-8]. The initial emphasis of GEISA and
HITRAN varied somewhat because HITRAN was focused on
the terrestrial atmosphere while GEISA was oriented towards
planetary atmospheres (in particular to support the Voyager
mission to the giant planets). The GEISA archive included the
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same seven atmospheric absorbers as in HITRAN, with a
dozen additional species such as: NHs, PHs, C;Hy, GeHy, C3Hg,
C,H,, HG3N, HCOOH, C3Hy, as well as molecules such as: NO,
SO,, NO,. There are other notable differences:

e a specific major initial task of GEISA has been to
develop software so that users of the database could
easily perform various kinds of extractions for their
own applications in atmospheric physics and molecu-
lar spectroscopy;

e since the very first edition of GEISA, any isotopologue
of a species having symmetry properties different from
that of the main isotopologue (e.g., CHsD and CH,,
CHD and C,H,) was entered as an independent
molecular species; its line intensities were given for
a 100% sample rather than scaling by standard isotopic
abundances (as for 2CH4 and '3>CH,).

The ARA group has continued to develop and maintain
GEISA for over three decades, responding to incorporate
new species and improve the completeness and accuracies
of the spectroscopic parameters. Since quality of its refer-
ence information strongly impacts applications of planetary
radiative transfer, there is an acute and constant demand for
validated, operational and interactive public spectroscopic
databases that are comprehensive and trustworthy. In its
present structure, GEISA is a computer accessible database
system, which, as described previously [5-9], delivers the
necessary data to interpret the terrestrial and planetary
atmospheric observations. GEISA comprises three inde-
pendent sub-databases devoted, respectively, to (a) line
parameters, (b) infrared and ultraviolet absorption cross-
sections, and (c) microphysical and optical properties of
atmospheric aerosols. It is used on-line by more than 300
laboratories for studies in atmospheric physics, astronomy
and astrophysics, and planetology.

The role of molecular spectroscopy in modern atmo-
spheric research has entered a new phase with the advent
of highly sophisticated spectroscopic instruments and
computers. The launch of high spectral resolution vertical
infrared sounders like AIRS (http://wwwe-airs.jpl.nasa.gov/)
on board EOS (http://eospso.gsfc.nasa.gov/)-Aqua (http://
aqua.nasa.gov/) since May 2002, or IASI (http://smsc.cnes.
fr/IASI/index.htm) on board the European polar satellite
Metop-A  (http://www.eumetsat.int/Home/Main/Satellites/
Metop/index.htm?l=en; http://www.esa.int/export/esalLP/
LPMetop.html) since October 2006, have opened promis-
ing perspectives for remote sensing applications as the
improvement of temperature and water vapor profile
retrieval, cloud and surface characteristics retrieval, or
retrievals of greenhouse gases (CO, and CH,4 for example)
and of various chemical species. The January 2009 launch
of the GOSAT satellite (http://www.gosat.nies.go.jp/index_e.
html) is another noteworthy event. The main aim of this
mission is to measure the column amounts and profiles of
the concentration of CO, and CH, over the globe.

Since the launch of Metop-A, GEISA has been declared
as the reference basis by the international working group
(ISSWG) in charge of the IASI hyperspectral sounder,
through the GEISA/IASI database [10] which was derived
from GEISA, as a sub-set for selected molecules, within

the 599-3001 cm~! spectral range. GEISA/IASI is cur-
rently and routinely used for the validation of the level-
1 IASI data, using the 4A radiative transfer model [11,12];
4A/LMD; 4A/OP co-developed by LMD and Noveltis,
http://www.noveltis.fr/, with the support of CNES).

The contents of each of the three sections of GEISA in
its 2009 edition (hereafter GEISA-09) will be described in
this paper. Recommendations on the quality of spectro-
scopic line parameters required (from the conclusions of
experts involved in atmospheric and planetary science)
will also be summarized.

GEISA is freely accessible from Ether, the CNRS/CNES/
IPSL Products and Services Center, website (http://ether.
ipsl.jussieu.fr/).

It should be noted that other well known spectroscopic
data compilations are available including:

e HITRAN (former “AFGL tape”) for atmospheric and
planetary remote sensing (see Ref. [13] for 2004 and
2008 Editions);

e MIPAS [14] specifically tied to satellite experiments in
the Earth’s atmosphere;

o BEAMCAT, for millimeter and submillimeter wave
propagation in the Earth’s atmosphere [15];

e the JPL Catalog of microwave to sub-millimeter transi-
tions [16] which contains, for the most part, rotational
transitions of a few hundred molecules which can or
may be observed in the atmospheres of Earth or other
planets to molecules occurring in the Inter StellarMe-
dium (ISM) or in CircumStellar Envelopes (CSE) of late
type stars. A small, but probably increasing number of
entries contain infrared transitions;

e the CDMS Catalog [17] which also contains mostly
rotational transitions of molecules important for the
ISM or CDEs. Naturally, some of the molecules are also
of relevance for Earth’s atmosphere or that of other
planets. Furthermore, a number of entries deal with
infrared transitions of such molecules. Selected exam-
ples are low-lying vibrational modes of C3 and C30, or
selected bands of CH*, C;H, or CH3CCH.

2. Line parameters GEISA-09 sub-database description
2.1. General overview

In the significant 2009 update described below, the
GEISA-09 sub-database of line parameters archives, at the
reference temperature of 296 K, the spectral properties of 50
molecular species (111 isotopologues) corresponding to a
total of 3,807,997 entries in the spectral range from 10~°
to 35,877.031 cm~! (10'° to 0.28 um). This represents
an increase of 8 molecular species, 14 isotopologues and
2,139,626 entries since the GEISA-03 [8,9] edition. This 28%
increase in entries is mainly due to: extension of spectral
ranges (i.e., CO,, N,O, etc.), addition of new vibrational
bands and isotopologues (i.e., SO,, etc.), more sophisticated
theoretical and/or experimental determination of the spec-
troscopic parameters (i.e.,, CO,, HNOs, H,CO, C;H,, HCN,
C4H,, SFeg, etc.), and new archived molecular species (see
Table 1 for details). The newly archived molecular species
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Table 1

Contents of the GEISA-09 sub-database on line parameters. Details per molecule of the 2009 evolution of GEISA content since its 2003 edition. Reference

temperature is 296 K.

Mol. ID GEISA-03 GEISA-09 Refs.
Spectral range (cm~') # lines Intensity exponent Spectral range (cm~!) # lines Intensity exponent
Max. Min. Max. Min.
H,0 1 0.007-22,656.465 58,726 -18 -31 0.007-25,232.004 67,789 -18 -33 [20-31]
CO, 2 436.123-9648.007 76,826 -18 —41 5.891-12,784.053 413,619 -18 —42 [32-69]
03 3 0.026-4060.783 319,248 -19 -30 0.026-6395.379 389,378 -19 -30 [70-97]
N,O 4 0.838-5131.249 26,681 -17 -27 0.838-7796.633 50,633 -17 -25 [98-102]
co 5 3.414-8464.882 13,515 -18 -77 3.414-8464.882 13,515 -18 -77 No update
CH,4 6 0.010-9199.285 216,196 -18 -33 0.001-9199.284 240,991 -18 —38 [103-126]
0, 7 107°-15,927.806 6290 -23 -50 10-6-15,927.230 6428 -23 -50 [127-137]
NO 8 3x107°-9273.214 99,123 -19 -84 10-6--9273.214 105,079 -19 —-94 [133-139]
SO, 9 0.017-4092.948 38,853 -19 —27 0.017-4092.948 68,728 -19 —28 [140-166]
NO, 10 0.498-3074.366 104,224 —18 —27 0.498-3074.152 104,223 —-18 -27 [167-168]
NHs; 11 0.058-5294.502 29,082 —18 —38 0.058-5294.501 29,082 -18 —38 [169-170]
PH3 12 17.805-2478.765 11,740 -18 —27 17.805-3601.652 20,421 -18 -27 [171-178]
HNO; 13 0.035-1769.982 171,504 -19 —26 0.012-1769.982 669,988 -19 -27 [179-195]
OH 14 0.005-35,877.030 42,866 -16 -84 0.005-35,877.031 42,866 -16 -84 No update
HF 15 41.110-11,535.570 107 -16 -25 41.111-11,535.570 107 -16 -25 No update
HCl 16 20.240-13,457.841 533 -18 -25 20.240-13,457.841 533 -18 -25 No update
HBR 17 16.231-9758.565 1294 -18 -32 16.231-9758.564 1294 -18 -32 No update
HI 18 12.509-8487.305 806 -19 -29 12.509-8487.305 806 -19 -29 No update
CLO 19 0.015-1207.639 7230 -20 -29 0.015-1207.639 7230 -20 -29 No update
0ocs 20 0.381-4118.004 24,922 -17 -27 0.381-4199.671 33,809 -17 -27 [196-210]
H,CO 21 3x1075-2998.527 2701 -19 -37 3 x 107%-3099.958 37,050 -19 -37 [211-216]
CyHg 22 725.603-2977.926 14,981 -20 —27 706.601-3000.486 27,644 -20 -29 [217-236]
CHsD 23 7.760-3306.810 35,518 —22 -29 7.7602-6510.326 49,237 —-22 -29 [237-245]
CoH, 24 604.774-4225.435 3115 -17 —26 604.774-9889.038 11,340 -17 -27 [246-255]
CoHy 25 701.203-3242.172 12,978 -19 -25 701.203-3242.172 18,378 -19 —-36 [256-260]
GEH4 26 1937.37-2224.570 824 -18 -21 1937.371-224.570 824 -18 -21 No update
HCN 27 2.870-18,407.973 2550 -18 —27 0.006-17,581.010 82,042 -18 -33 [261-292]
C3Hg 28 700.015-799.930 8983 -21 -23 700.015-799.930 8983 -21 -23 [293-298]
CoN, 29 203.955-2181.690 2577 -19 -23 203.955-2181.690 2577 -19 -23 [299-301]
C4H, 30 190.588-654.425 1405 -19 -23 191.635-730.235 119,480 -18 -23 [302-315]
HGN 31 474.293-690.860 2027 -19 -23 463.604-759.989 179,347 -19 -23 [316-319]
HOCl 32 0.0236-3799.682 17,862 -19 —27 0.0236-3799.682 17,862 -19 -27 No update
N, 33 1992.63-2625.497 120 —27 -33 1992.63-2625.497 120 -27 -33 [320-322]
CHs(l 34 674.143-3172.927 18,344 —-19 -31 674.143-3172.927 18,344 -19 -31 [323-324]
H»0, 35 0.043-1499.486 100,781 -19 —28 0.043-1730.371 126,983 -19 —28 [325-327]
H,S 36 2.985-4256.547 20,788 -18 -25 2.985-4256.547 20,788 —-18 -25 [328-331]
HCOOH 37 1060.96-1161.251 3388 -19 -21 10.018-1889.334 62,684 -19 -25 [332-342]
COF, 38 725.005-2001.348 83,750 -19 -23 725.005-2001.348 83,750 -19 -23 No update
SFg 39 940.424-952.238 11,520 -19 -21 588.488-975.787 92,398 -19 -23 [343-348]
C3Hy 40 290.274-359.995 3390 -20 —22 288.913-673.479 19,001 -19 -23 [349-357]
HO, 41 0.173-3675.818 38,804 -19 -25 0.173-3675.819 38,804 -19 -25 No update
CIONO, 42 763.641-792.488 32,199 -21 —24 0.636-797.741 356,899 -21 -27 [358-362]
CH3BR 43 - 794.403-1705.612 36,911 -20 —26 [363-377]
CH;0H 44 - 0.019-1407.206 19,897 -19 —-34 [378-389]
NO* 45 - 1634.83-2530.462 1206 -18 -80 [390-391]
HNC 46 - 0.217-4814.904 5619 -17 —24 [392-401]
CeHg 47 - 642.427-705.262 9797 -20 -23 [402-405]
CHD 48 - 416.785-3421.864 15,512 -22 —28 [406-409]
CF4 49 - 594.581-1312.647 60,033 -19 -23 [410-420]
CHsCN 50 - 890.052-1650.000 171,172 -19 -37 [428-432]
Total # lines: Total # lines:
1,668,371 3,807,997

Note: “No update” in the Refs. column indicates that the contents in GEISA-09 and GEISA-03 are identical.

are: CH3Br, CH3OH, NO+, HNC, CGH6, CzHD, CF4, and CH3CN
As stated above, the molecules included in GEISA-09 (and
since the database creation), are constituents, not only of
the atmospheres of Earth (major permanent and trace
molecules), but also of other planets (such as: CoHy, GeHy,
C3H8, C2N2, C4H2, HC3N, st, HCOOH and C3H4, mainly for

giant planets). The evolution of the GEISA line parameters
sub-database, since 1975, is presented in Fig. 1.

The parameters of each spectral line or molecular
vibrational-rotational transition are stored in the new
“standard format” for GEISA and GEISA/IASI as described
in Ref. [10], with some newly introduced technical
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Fig. 1. Evolution of the GEISA line parameters sub-database since 1975. The year identifications are on the X-axis. The evolution of the number of lines is
displayed as histograms (green color) with corresponding scale given on the right Y-axis. The total number of molecules and isotopes, included in each
atlas, are color coded, as red and purple curves, respectively, with corresponding scale on the left Y-axis.

modifications, i.e., extended format field for quantum
identifications for the lower and upper states of the
transition, for self-broadened half-width and air-induced
pressure shift of the line transition, corresponding,
respectively, to fields of format symbols: E; (i=1-4), M
and N; former fields identified as P (accuracy indices for
wavenumber, intensity and half-width) and Q (indices for
lookup of references for wavenumber, intensity and half-
width) have been removed. See Appendix B for details.
Evolution of the contents of GEISA-09 since the 2003
edition of GEISA (hereafter GEISA-03) is summarized in
Table 1. Individual GEISA-09 molecule names and their
corresponding identification codes (ID codes defined for
the GEISA management software) are in the first two
columns of the Table. The following columns give succes-
sively for GEISA-03 and for GEISA-09: the spectral range
(em~1), the number of entries, the exponents of the
maximum and minimum intensity values (expressed
in cm~!/(molecule cm~2) at 296 K), for each molecule,
and finally the 2009 update references. The spectroscopic
line parameters of 31 of the 42 molecules included in
GEISA-03 have been updated. The parameters of 11 mole-
cules, i.e., CO, OH, HF, HCl, HBr, HI, CIO, GeH,, HOCI, COF,,
and HO», are kept unchanged as in GEISA-03. The details of
the GEISA-09 sub-database on line parameters are given in
Table 2. The items listed in columns 3-6 for each molecular
species, given in column 1, are: the number of lines, the
intensity average in cm molecule™! (different expression
for cm~'/(molecule cm~?2)), the average half-width at half-
maximum (HWHM in cm~!atm~1!), the present isotopo-
logue identification codes (see Table 2 of Ref. [7] for
isotopic species code identifications and complementary
information, in Appendix C, for new isotopic and molecular
species in GEISA-09); for each isotopic species listed in

column 6, are given in columns 7-11: the number of lines
with associated minimum and maximum wavenumbers
(cm~1) and intensities (in cm molecule 1)

Table 3 summarizes the differences between the
GEISA-09 and the HITRAN 2008 (hereafter HITRAN-08)
[13] databases in terms of the number of lines, bands, and
isotopologues. An example of quantitative comparison
between H,0 intensity values in GEISA-09 and HITRAN-08
is given in Fig. 2. In the spectral range 1400-2100 cm~!,
5626 transitions with common quantum identification in
both databases and with intensity values larger than
10722 cm ™ !/(molecule cm~2), are involved in this compar-
ison. One can notice that 8% of the strong lines (intensities
greater or equal 1072° cm~!/(molecule cm~2)) exhibit
differences greater that 5%. Evaluations of impact on atmo-
spheric radiative transfer modeling, using HITRAN or GEISA,
are presented, for instance, in Jacquinet-Husson et al. [8],
Matricardi [18] Newman [19]. It may be noted that the
previous updates of HITRAN and GEISA databases have been
finalized at nearly the same time, and include very similar
data sources for many molecules. Because of its origin,
certain molecules, mainly related with planetary atmo-
spheres (especially those of the giant planets) are specific
to GEISA, such as: GEH4, C3H8, CzNz, C4H2, C3H4, HC3N, HNC,
CsHg, and CoHD. On the other hand, species HOBr and O are
HITRAN specific, and in HITRAN CHs;D and CHD are
considered isotopologues of methane and acetylene, but
they are independent molecules in GEISA (see Sections 1
and 2). In Table 3, molecular species formulae are listed in
column 1 and their identification codes for database man-
agements in column 2. For each molecular species and for
each data base, the number of bands, isotopologues and
lines, are given in columns 3, 4 and 5, respectively. The
related minimum and maximum of the spectral range
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Table 2
The GEISA-09 sub-database on line parameters. Spectral and intensity ranges per molecule and isotopologue.

Mol. ID # lines Intensity HWHM average Isot. # lines Minimum Maximum Minimum intensity Maximum intensity
average (cm~'atm™1) ID wavenumber wavenumber (cm molecule 1) (cm molecule™ ')
(cm molecule™ 1) (em™1) (em™1)
H,0 1 67,789 1.088x10~2! 0.0699 161 41,147 0.401 25,224.909 9.400 x 10~33 2.654x 10718
81 8360 6.785 14,362.151 2.005 x 10~28 5.390 x 10~2!
171 5468 6.471 13,909.783 2.671 x10731 9.830 x 10722
162 11,980 0.007 13,900.444 1.240 x 10~ 32 2.700 x 10-22
182 659 1173.772 3824.717 2.033x10-%7 5.083 x 10-26
172 175 1234.235 1598.7655 2.033x107% 9.319x107%
CO, 2 413,619 2.724x 1022 0.0704 626 165,181 345.936 12,784.052 1.000 x 10—3° 3.520x 1018
636 66,657 433.190 12,462.048 1.000 x 10~3° 3.740 x 10~ 2°
628 110,136 5.891 11,422.648 1.000 x 10~3° 6.870 x 10~2!
627 19,064 10.600 8270.099 1.000 x 10~3° 1.260 x 10~2!
638 39,007 449.686 6744.160 1.000 x 10—3° 7.810x10-23
637 2741 580.856 6768.643 1.000 x 10~3° 1.400 x 10~23
828 10,045 484.297 8162.742 1.000 x 10~3° 1.330x 1023
728 493 626.438 5031.885 1.009 x 10~ 28 2.500 x 10~24
838 295 2115.684 2276.481 4.870 x 10~%2 3.289 x 10~ 24
05 3 38,9378 5247 x10~% 0.0698 666 233,132 0.026 6395.379 3.904 x 10~2° 4.060 x 10~2°
668 44,302 0.921 2767.874 4692 x 1028 7.760 x 10~23
686 24,886 1.177 2739.289 9.970 x 10~2° 7.560 x 10~23
667 58,171 0.289 820.380 5.135x 103! 5356 x 10~ 2°
676 28,887 0.213 822.795 1.433 x 10731 5.827 x10~2°
N,O 4 50633 1.254x102! 0.0750 446 34,468 0.838 7796.633 1.016 x 10~2° 1.003 x 10~ '8
456 4466 5.028 5088.906 5.220x 10726 3423 x 102!
546 4841 4.8580 4992.236 4720 x 1026 3.513x 102!
448 4412 541.342 4672579 1.614x 10~%° 1.930 x 102!
447 1778 549.367 4429.961 1.614x10~%° 4.017 x 10~22
458 105 2121.770 2203.983 1.673 x10~%° 6.637 x 10~ 24
548 108 2144.997 2226.290 1.675 x 10~ %° 7.631x 1024
556 455 1226.536 3415.768 1.642x 10~ % 1210x10~2
co 5 13515 7.543x10° %2 0.0467 26 5908 3.53010 8464.882 7.880x 1078 4.460x10°1°
36 4768 3.414 8180.219 3.610x10-73 4.690 x 10~2!
27 748 3.714 6338.061 8.190 x 10~ 1.600 x 10~ %2
28 770 3.629 6266.577 7.610x 10739 8.320x 1022
37 580 1807.871 6196.551 1.030 x 1036 1.680 x 10~ 24
38 741 3.462 6123.294 2.580 x 10~ 4° 8.700 x 10~24
CH,4 6 240,991 8225x10 % 0.0521 211 212,115 0.010 9155.326 1117 x 10~3° 2,099 x 10~ 1°
311 28,876 0.032 6069.084 4936 x 1034 2317 x10°2
0, 7 6428 3.885x 10726 0.0430 66 1431 0.000 15,927.230 9.808 x 10! 8.762 x 10~ 24
67 4326 0.000 14,536.515 8.513 x 10! 3.439 x10~%7
68 671 1.572 15,851.213 1.186 x 10~ 3° 1.727 x 10~%¢
NO 8 105,079 4.625x10~% 0.0477 46 100,902 0.000 9273.214 1.451 x 10~%° 1.188 x 10-2°
48 679 1601.909 2038.846 4190 x 10~ 28 1.390 x 1022
56 699 1609.585 2060.462 4.430x 1028 2.550 x 10722
SO, 9 68,728 5.850x10 %2 0.0090 626 57,963 0.017 4092.948 1.020 x 10~ 28 4.851x10-2°
646 10,765 1060.196 2500.400 4.980 x 10~ 24 4493 x 10~ 2
NO, 10 104,223 5.980x10-22  0.0742 646 104,223 0.498 3074.153 4240 x 10~28 1.302 x 10~
NH; 11 29,082 1.639x102! 0.0827 411 27,992 0.0582 5293.578 8.086 x 10~3° 4585x10°1°
511 1090 0.375 5179.786 5.460 x 10~2° 1.992 x10-2!
PH; 12 20421 1367 x102! 0.0648 131 20421 17.805 3601.652 1.849 x 1028 2.520x 10710
HNO; 13 669,988 1.768 x 10722 0.1048 146 669,988 0.012 1769.982 3.590 x 10~28 3.130 x 1072
OH 14 42,866 2.806x10°2°  0.0440 61 42,711 0.005 35,877.030 1.500 x 1085 6.450 x 10~ 17
62 90 0.010 1.824 2.090 x 103! 5.780 x 10~2°
81 65 0.053 6.325 1.200 x 10~3° 1.200 x 10~26
HF 15 107 6.773x10°'°  0.0407 19 107 41.111 11,535.570 1.110x 10~26 1.440 x 107
HCl 16 533 3.189x10°2°  0.0403 15 284 20.270 13,457.841 1.090 x 1026 5.030 x 10~
17 249 20.240 10,994.721 1.010 x 1026 1.610x 10~ 1°
HBr 17 1294 4.769 x 10~2! 0.0429 11 642 16.231 9757.189 1.528 x 10~ 32 1.178 x 10~ 1°
19 652 16.236 9758.565 9.450 x 10~33 1211 x 107"
HI 18 806 1361 x 102! 0.0500 17 806 12.5094 8487.305 1.644 x 1030 3423 x10°20
clo 19 7230 1.605x10-22  0.0873 56 3599 0.028 1207.639 1520 x 10~2° 3.240 x 10~2!

76 3631 0.015 1199.840 5.090 x 10~3° 1.030 x 102!
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Table 2 (continued )
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Mol. ID # lines Intensity HWHM average Isot. # lines Minimum Maximum Minimum intensity Maximum intensity
average (em~'atm~') ID wavenumber wavenumber (cm molecule™ ') (cm molecule ')
(cm molecule™ 1) (em™1) (em™1)
0ocs 20 33,809 3.436x10°2! 0.0894 622 19,130 0.406 4199.671 8.550 x 10~2° 1.220x 107 '8
624 6665 0.396 4165.233 6.400 x 10~%7 4.720x10°2°
632 3243 0.404 4055.090 1.720 x 10~2%7 1.200 x 10~2°
623 2788 509.007 4163.069 4678 x 10~26 8.430 x 102!
822 1626 0.380 4045.602 2.620x 10-28 2.090 x 10~2!
634 357 1972.188 2032.039 1.010x 10-23 5.240 x 10~22
H,CO 21 37,050 1.175x10° 2! 0.1079 126 36,120 0.000 3099.941 1.224 x 1038 7.436 x10~2°
128 367 0.034 47.486 1.392 x 1030 1.332x 10722
136 563 0.037 72.744 2424 x 1073 7.548 x 10~ 22
CHg 22 28439 1.600x 1072  0.0670 226 22,402 706.601 3000.486 5422 x10°%° 3.210x10°2°
236 6037 725.603 918.717 1.320x 1028 1.770 x 10~23
CHsD 23 49237 1903x10°2°  0.0542 212 45,024 7.760 6510.326 5.677 x 10~ 3° 5714 x10°23
312 4213 959.394 1694.123 2.768 x 10~2° 1398 x 10~%°
C,H, 24 11,340 3.877x10~2%! 0.0720 221 11,055 604.774 9889.0377 4425 %1028 1.187x 10~ '8
231 285 613.536 6588.935 3.820x 10-26 4942 x10°1°
C,H, 25 18378 1.081x 102! 0.0861 211 18,097 701.203 3177.173 2.764 x 10737 8.412x 1020
311 281 2947.832 3180.238 5.061 x 10~24 1.618 x 10~2!
GeH; 26 824 4978 x1072°  0.1000 411 824 1937.371 2224.570 1.960 x 10~ 22 3.680x 10~ 1°
HCN 27 82,042 4.201x10%2  0.1002 124 79,957 0.006 17,581.009 8.057 x 1034 7.010x 10~ 1°
125 791 2.870 3550.842 5.156 x 10~ 32 2.468 x 10~
134 791 2.880 3532.252 1.431x 103! 3.785x 102!
224 503 2415 2725.192 1.801 x 10— 3° 7317 x10°23
CsHs 28 8983 4139%x10-2  0.0800 221 8983 700.015 799.930 1.583 x 1024 1.810x 1022
CNy, 29 2577 1.885 x 10721 0.1023 224 2577 203.955 2181.690 3.130x 1024 1.200 x 10~2°
C4H, 30 119480 2.530x 10722 0.0999 211 119,480 191.635 730.235 3.024 x 1024 1.435x10°1°
HCsN 31 179,347 6.982 x10~23 0.0998 124 179,347 463.604 759.989 1.052 x 1024 4.040 x 10~2°
HOCl 32 17,862 1.867x10°2! 0.0689 165 9293 0.023 3799.249 1.650 x 10~27 3.590 x 10~ 2°
167 8569  0.349 3799.682 7.220x 10728 1.140 x 10~2°
N> 33 120 5.605x1072°  0.0343 44 120 1992.628 2625.497 1.590 x 10734 3.548 x 10728
CHsCl 34 18344 4370x10°22  0.0951 215 10,039 679.050 3172.927 9.051 x 10732 1.128 x 10~2°
217 8305 674.143 3161.830 4192 x 1026 3.542 x 10~
H,0, 35 126,983 4.622x 1022 0.0999 166 126,983 0.043 1730.371 5.064 x 10~2° 5.582 x 10~2°
H,S 36 20,788 2.992x10722  0.0740 121 12,330 2.985 4256.547 1.450 x 1026 1360 x 10~ 1°
131 3564 5.601 4098.234 2.020 x 10-26 5.990 x 10~2!
141 4894 5.615 4171.176 2.020 x 10-28 1.080 x 10~2!
HCOOH 37 62,684 1.231x10°2! 0.1010 261 62,684 10.018 1889.334 3.966 x 1026 5.068 x 10~2°
COF, 38 83,750 2.105x10°2! 0.0845 269 83,750 725.005 2001.348 4740 x 10~24 3.940 x 10-2°
SFg 39 92,398 5.117x10722  0.5000 29 92,398 588.488 975.787 1.000 x 10~24 1.453 x10~2°
CsH, 40 19,001 6.338x10°%2  (-) 341 19,001 288912 636.482 4230 x 1024 1.550 x 10~ 2°
HO, 41 38,804 6.847x10°22  0.1070 166 38,804 0.173 3675.818 1.000 x 10~26 2.744 x 10-2°
CIONO, 42 356,899 7.958 x 102  0.1404 564 206,861 0.636 797.741 7.547 x 10~28 3.850 x 10~ 2?
764 150,038 0.928 790.805 7.519x 1028 1.260 x 1022
CHsbr 43 36911 1.293x10-22  0.0939 79 18,692 794.403 1705.612 9.970 x 10~27 2.580 x 10~2!
81 18,219 795.083 1696.896 1.000 x 10-26 2.530 x 1021
CHsoh 44 19,897 9.181x10?? 0.1000 216 19,897 0.019 1407.205 8.826 x 1073 3.771x10-2°
NO+ 45 1206 2.168 x 10~2! 0.0600 46 1206 1634.831 2530.462 6.121 x 108" 1.186 x 100
HNC 46 5619  4.201x10°22  0.1002 142 5619 0217 4814.904 1.001 x 10~ % 1.164x 10~ '8
CeHs 47 9797 8.394 x 10~ 22 0.1014 266 9797 642.427 705.262 4.070 x 10~24 9.490 x 10~2!
C,HD 48 15512 4.843x1072°  0.0680 122 15,5512 416.785 3385.564 5.194 x 10~2° 3.219x10° 23
CF4 49 60,033 1.377x10°2! 0.5000 291 60,033 594.581 1312.646 7.912 x 10~24 4717 x 10~2°
CHsCN 50 17,172 2.688x10~22  0.0792 234 17,172  890.052 1650.000 1.200 x 10738 3.824x10°2°
Total 3,807,997

Note: (—) Missing data.
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Table 3
Summary of differences for molecular species cataloged in the line parameter portion of GEISA-09 (G) and HITRAN 2008 (H) [13].

Mol. Mol ID # bands # isot # lines Spectral coverage (cm~1)

G H G H G H G H Minimum wavenumber (cm~!) Maximum wavenumber (cm~')

G H G H

H>0 1 1 245 373 6 6 67,789 69,201 0.007 0.007 25,232.004 25,232.004
CO, 2 2 3747 2832 9 9 413,619 314,919 5.891 0.736 12,784.052 12,784.052
O3 3 3 162 218 5 5 389,378 409,686 0.026 0.026 6395.379 5786.118
N,O 4 4 369 351 8 5 50,633 47,843 0.838 0.838 7796.633 7796.633
co 5 5 104 47 6 6 13,515 4477 3.414 3.462 8464.882 8464.881
CHy4 6 6 138(§) 138 2 2(§) 240,991(§) 240,854($) 0.001 0.001 9155.326 9155.326
0, 7 7 19 19 3 3 6428 6428 0.000 0.000 15,927.230 15,927.230
NO 8 8 293 293 3 3 105,079 105,079 0.000 0.000 9273.214 9273.214
SO, 9 9 17 13 2 2 68,728 58,250 0.017 0.017 4092.948 4092.948
NO, 10 10 11 11 1 1 104,223 104,223 0.498 0.498 3074.153 3074.153
NH5 1 11 78 78 2 2 29,082 29,084 0.058 0.058 5293.578 5293.578
PH;3 12 28 19 18 1 1 20,423 20,099 17.805 770.877 3600.701 3600.701
HNO;3 13 12 26 18 1 1 669,988 487,254 0.012 0.012 1769.982 1769.982
OH 14 13 245 221 3 3 42,866 31,976 0.005 0.003 35,877.030 19,267.804
HF 15 14 6 6 1 1 107 107 41.111 41.111 11,535.570 11,535.570
HCl 16 15 17 17 2 2 533 613 20.240 20.240 13,457.841 13,458.024
HBr 17 16 16 16 2 2 1293 1293 16.232 16.231 9758.312 9758.312
HI 18 17 9 9 1 1 806 806 12.509 12.509 8487.305 8487.305
Clo 19 18 12 16 2 2 7230 11,501 0.015 0.015 1207.639 1207.639
0OCS 20 19 192 164 6 5 33,809 29,361 0.381 0.381 4199.671 4199.671
H,CO 21 20 17 17 3 3 37,050 37,050 0.000 0.000 3099.958 3099.958
CyHg 22 27 6 6 2 2 28,439 28,439 706.601 706.601 3000.486 3000.486
CH3D(§) 23 (§) 26 26 2 2(§) 49,237(8) 49,237(8) 7.760 7.760 6510.326 6510.326
CyH, 24 26 118 118 2 2 11,340 11,340 604.774 604.774 9889.038 9889.038
CyHy 25 38 12 12 2 2 18,378 18,378 701.203 701.203 3177.173 3177173
GeHy 26 ABS 1 ABS 1 ABS 824 ABS 1937.371 ABS 2224.570 ABS
HCN 27 23 775 30 4 3 82,042 4253 0.006 0.015 17,581.009 3423.927
CsHg 28 ABS 1 ABS 1 ABS 8983 ABS 700.015 ABS 799.930 ABS
GN, 29 ABS 7 ABS 1 ABS 2577 ABS 203.955 ABS 2181.690 ABS
C4H, 30 ABS 1509 ABS 1 ABS 119,480 ABS 191.635 ABS 730.2352 ABS
HC3N 31 ABS 3302 ABS 1 ABS 179,347 ABS 463.604 ABS 755.696 ABS
HOCl1 32 21 6 8 2 2 17,862 16,276 0.024 1.081 3799.682 3799.682
N, 33 22 1 1 1 1 120 120 1992.628 1992.628 2625.497 2625.497
CHsCl 34 24 14 83 2 2 18,344 196,171 674.143 0.873 3172.927 3172.927
H,0, 35 25 130 130 1 1 126,983 126,983 0.043 0.043 1730.371 1730.371
H,S 36 31 30 30 3 3 20,788 20,788 2.985 2.985 4256.546 4256.547
HCOOH 37 32 8 8 1 1 62,684 62,684 10.018 10.018 1889.334 1889.334
COF, 38 29 7 7 1 1 83,750 70,601 725.005 725.005 2001.348 2001.348
SFe(x%) 39 30 6 3 1 1 92,398 2,889,065(:) 588.488 580.000 975.788 996.000
CsHy 40 ABS 22 ABS 1 ABS 19,001 ABS 288.912 ABS 673.479 ABS
HO, 41 33 4 4 1 1 38,804 38,804 0.173 0.173 3675.818 3675.818
CIONO,(x%) 42 35 7 3 2 2 356,899 32,199(x) 0.636 763.641 797.741 797.741
CH3Br 43 40 6 6 2 2 36,911 36,911 794.403 794.403 1705.612 1705.612
CH3;0H 44 39 16 16 1 1 19,897 19,897 0.019 0.019 1407.205 1407.205
NO* 45 36 6 6 1 1 1206 1206 1634.831 1634.831 2530.462 2530.462
HNC 46 ABS 84 ABS 1 ABS 5619 ABS 0.217 ABS 4814.904 ABS
CeHg 47 ABS 1 ABS 1 ABS 9797 ABS 642.427 ABS 705.262 ABS
C,HD 48 ABS 348 ABS 1 ABS 15,512 ABS 416.785 ABS 3385.564 ABS
CF,4 49 42 5 5 1 1 60,033 60,033 594.581 594.581 1312.647 1312.647
CHsCN 50 41 2 2 1 1 17,172 3572 890.052 890.052 1650.000 945.655
(6} ABS 34 ABS 1 ABS 1 ABS 2 ABS 68.716 ABS 158.303
HOBr ABS 37 ABS 1 ABS 2 ABS 4358 ABS 0.155 ABS 315.908

Note: ABS stands for a molecular species not included in the actual database (HITRAN or GEISA)
(§) CH3D considered as an individual molecule in GEISA; but as an isotopologue of CH4 in HITRAN.
(§) For HITRAN, column 5, sub-column “H”, includes:

e for CH,4 (Mol. “6”), total # lines of isotopologues numbered “1” and “2"” (coded “211” and”311" [7], respectively, in GEISA);
e for CH5D (Mol. “23”), total # lines of CH4 isotopologues numbered “3” and “4” (coded “212” and”312” [7], respectively, in GEISA).

() Molecule included in HITRAN 2008 supplemental line list.

(in cm~!) are in the last four columns. The parameters for in the main list of GEISA-09. The format of HITRAN-08 line
molecules SFg, CIONO, and CF4 have been archived in the parameters [13] is different from that of GEISA. Among the
supplemental line list of HITRAN-08 whereas they are kept GEISA management software capabilities a program has
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Fig. 2. Quantitative comparison between H,0 intensity values in GEISA-09 and HITRAN-08 [13]. Line intensity differences (GEISA-09 value minus
HITRAN-08 value), in percent of GEISA-09 value, are on the Y-axis; the base 10 logarithm of GEISA-09 line intensity is on the X-axis. Data points are

indicated by a read +.

been created which makes it possible to convert routinely
the format of one database into the other database format,
in their actual public release (GEISA-09 to HITRAN-08
format, or HITRAN-08 to GEISA-09 format). This has proven
to be an efficient added capability for both database users
especially for the purpose of easier identification and
evaluation of the impact of spectroscopic content in specific
applications (such as planetary atmosphere radiative trans-
fer modeling).

2.2. Description of updates per individual molecules

2.2.1. H50 (molecule 1)

The water molecule is of great interest both in terres-
trial and in planetary studies, not the least because of its
interference during ground-based observations.

The GEISA-09 H,0 update involves spectroscopic para-
meters from three different origins, i.e. in the spectral
region 500-7973 cm ™!, the JPL data of Toth are available
with their related description and references from the
mark4sun website at http://mark4sun.jpl.nasa.gov/spec
data.html. These data represent a total of 36,849 lines.

In the 10- 2000 cm~! spectral region, for the normal
isotopologue Hz °0, updated line parameters are computed
using the results of Coudert et al. [20]. This update covers
line position and line intensity analyses of data up to the
second triad as well as line strength (or line intensity)
measurements for v, band transitions. Using the spectro-
scopic parameters from this reference and the theoretical
approach of Lanquetin et al. [21], a line list of 5624 entries
was generated with a line intensity cutoff of 1072 cm™!/
(molecule cm~2). This calculation along with the line
measurements of Ref. [20] revealed that experimental line
intensity values for transitions belonging to the v, band in
the 1000-2000 cm ! range were underestimated in pre-
vious measurements of Toth in 1998 [22], for the strongest
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Fig. 3. Residuals of observed H,O0 line intensities of Toth Ref. [22] minus
those from Coudert et al. [20] (archived in GEISA-09). The X-axis is
the base 10 logarithm of the observed line intensity incm™!/
(molecule cm~2). The Y-axis corresponds to the residual in percent of
the observed line intensities [22]. Each data point is indicated by a dot,
error bars are also drawn. For clarity, the figure only displays the 967
strongest transitions from Ref. [22], belonging to the v, band, with an
intensity larger than 10~24 cm~"/(molecule cm~2 ).

transitions in this region. Fig. 3 shows the differences
between the new intensity values from Coudert et al.
[20] and those reported in Ref. [22]. In agreement with
Ref. [20], this figure emphasizes that discrepancies of about
—5% arise for strong transitions with an intensity on the
order of 10~ !° cm~!/(molecule cm~2).

For the spectral range 9500-14,500 cm~, line posi-
tions and intensities were taken from Tolchenov and
Tennyson [23]. These data, representing 12,027 entries,
came from a refit of room temperature Fourier transform
absorption spectra of pure, natural abundance-water
vapor by Schermaul et al. [24,25] recorded at path lengths
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from 5 up to 800 m. These parameters have demonstrated
[23] to give a more consistent representation of the
underlying spectrum than previous studies. In this spec-
tral region, line broadening and shifting due to N, and O,
pressure effects are included from calculations which use
a semi-empirical approach based on impact theory mod-
ified by introducing additional parameters to extend the
use of empirical data [26]. This method was further
developed by using anharmonic wavefunctions in the
estimates of the line parameters. The main feature is the
use of a complete set of high accuracy vibration-rotation
dipole transition moments calculated for all possible
transitions using wavefunctions determined from varia-
tional nuclear motion calculations and an ab initio dipole
moment surface [27]. Full details of this approach are
described in Ref. [28], the results of H,O line parameters
calculation and comparison with experimental data are
presented in Refs. [29-31].

Fig. 4 exhibits the differences between H,0 lines, in the
frequency range 9500-14,500 cm !, archived in GEISA-03,
and those added in GEISA-09. The exponents of the
intensity values (expressed in cm™!/(molecule cm~2)) at
296 K) are on the Y-axis and the transition wavenumbers
on the X-axis. Data included in each GEISA edition are
identified by different colors: red triangles for GEISA-03
and blue crosses for GEISA-09.

In practice, the resulting total file the GEISA-09 update
has been processed as follows: as a first steg Toth’s data
were retained and replaced, for the main H; O isotopolo-
gue, by Coudert’s data for lines with similar quantum
identification; as a second step the file was finalized by
adding the new data for the 9500-14,500 cm~! spectral
region. The GEISA-09 H,O archive comprises 67,789
entries against 58,726 in GEISA-03.

2.2.2. CO, (molecule 2)

Carbon dioxide, like water, is an ubiquitous species
observed in most of the solar system planets. To accom-
modate planetary applications, the GEISA-09 line list

219 . GEISA-03

GEISA-09 NIR addition

Transition intensity (cm!f(molecule cm?))

10000 11000 12000 13000 14000
Transition wavenumber (cm")

Fig. 4. H,0 intensity versus wavenumber for transitions present in
GEISA-03 (4 in red) and for those added in GEISA-09 (+ in blue), in
the NIR spectral region.

update has been processed with 412,831 new transitions
from seven isotopologues ('2C'®0,, 3C'%0,, '°0'%C!®0,
16012(:170, 160]3(:180’ 160]3(:170 and ]2cl802) betWeen
5.9 and 12,784.0cm~!. It has to be noted that 788
transitions, of the two other isotopologues species:
13¢180, and 70'2C'80, have been retained from GEISA-
03 in the final GEISA-09 CO, line list. The increase in the
number of transitions (from 76,826 to 413,619) compared
to the GEISA-03 list (see Table 2) arises from lowering the
minimum intensity to 1073 cm~!/(molecule cm~2) at
296 K, in the seven isotopologues update entries, and
merging the two compilations: the CDSD-296 databank
[32] and partly the JPL near-infrared line list [33], as
explained below.

The current version of the CDSD-296 databank is an
extension and development of its previous 2003 version
[34] which was used in GEISA/IASI [10] and GEISA-03. For
the four most abundant isotopologues '2C'®0,, !3C'60,,
16012C180 and '%0'2C'70, the line positions and line inten-
sities are calculated using new sets of effective Hamiltonian
and effective dipole moment constants. These new con-
stants are determined by including extensive new measure-
ments in the fitting (see [35-59] and references therein); in
particular, the data obtained at JPL and at the Joseph Fourier
University (Grenoble, France) resulted in better accuracy
and completeness for the near infrared calculations. Using
Fourier transform spectroscopy experiments the first team
has performed very precise measurements of both line
positions and line intensities of nine isotopologues of carbon
dioxide in the 4300-7000 cm ' region [33,38,48,52,57]. The
second team used highly sensitive CW-CRDS experiments
and measured line positions and line intensities of a large
number of lines including very weak lines as low as
10~2° cm~'/(molecule cm~2) of several isotopologues in
the 5851-7045 cm ™! region [35,40,46,51,55,56,58,59]. The
parameters obtained by including these weak lines belong-
ing to high J values or to hot band transitions considerably
improved the extrapolation properties of elaborated models
of effective Hamiltonian and effective dipole moment
operators. The theoretical approach used for global model-
ing of high resolution spectra of carbon dioxide is presented
in Refs. [60-63]. Extension of the wavenumber region for
the rare isotopologues was done using the sets of the
effective dipole moment parameters belonging to the most
abundant isotopologues. In order to meet the needs of the
modern infrared sensors the intensity cutoff was lowered to
1073% cm~'/(molecule cm~2) at 296 K. Because of this a
large number of additional weak bands and weak lines
corresponding to high values of the angular momentum
quantum number of the strong bands became available in
the new version of CDSD-296. The accuracy of the line
parameters of these weak lines strongly relies on the
extrapolation abilities of the models used. It was shown in
Ref. [64] that the effective operator models, used for the
generation of CDSD-296, provide reliable extrapolation
properties.

On average, the residuals between CDSD calculated
line positions and those observed are two times
larger than measurement uncertainties. The CDSD calcu-
lated line intensities are practically always within their
measurement uncertainties for all isotopologues. Air- and
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self-broadening parameters were calculated using the
equations from Rothman et al. [65], but the air-induced
pressure shift parameter was set to zero throughout. The
current atmospheric version of the databank is available on
the web site of the IAO: ftp.iao.ru/pub/CDSD-2008/296.

Finally, it was determined that some of the intensities
in the near infrared line list from Toth et al. were more
accurate than the reanalyzed values and that the newer
pressure broadening coefficients (widths and shifts) in the
Toth et al. studies [66,67] better represented the measured
spectra. Therefore, this line list, consisting initially of
28,530 entries, has been retained for the GEISA-09 update
too, adopting the following process for its inclusion:
first, 15,788 lines whose intensities were lower than
10726 cm~!/(molecule cm~2) at 296 K for the two main
isotopologues 2C'®0, and '3C'®0, and for all the isotopo-
logues with intensities between 1072° and 10~3°cm™Y/
(molecule cm~2) at 296 K (Brown private communication)
were discarded; second, the 12,742 remaining lines were
merged with the CDSD data, replacing them when the
quantum identification was the same.

With this change, the choice of Toth et al. [66,67] for
air-broadening, self-broadening and air-induced pressure
shift of the line parameters is included in GEISA-09. These
broadening parameters were replaced, for 2C'®0, lines
with the same quantum numbers, by the results from the
latest work of Predoi-Cross et al. [68] for the temperature
dependences of air-broadened CO, widths, temperature
dependence of air-induced pressure shift and tempera-
ture dependence of the self-broadened half-widths. The
parameters from Predoi-Cross et al. were implemented
for the entire line list when available. Since the database

Table 4
New ozone bands (1°03) in the GEISA-09 edition.

was completed, a new effort to predict air-broadened
pressure shifts has been undertaken by Hartmann [69]
which will be considered for future database updates.

2.2.3. 03 (molecule 3)

An update of the line positions and intensities has been
made for the three main isotopologues of ozone, 60,
160160180, and '°0'80'°0. For the main isotopologue '°0s,
the list of the 27 newly included bands (spectral range
from 1632 to 4845 cm™!) in GEISA-09 is given in the first
column of Table 4 with associated spectral interval (cm™1),
number of lines and sum of line intensities, listed under
columns 2-4, respectively. Table 5 lists the 28 updated
bands with a similar display. These data cover the spectral
range from 1613 to 4845 cm™ . The line list is given with
an intensity cutoff of 2 x 1072 cm~!/(molecule cm~2) at
296 K for 100% '°05 abundance. These results are based on
the analyses of the absorption spectra recorded in the
GSMA laboratory using the FTS of the Champagne-
Ardennes University (Reims, France) [70]. The calculations
of the line positions were made using the Hamiltonian
parameters for the lower states (000), (100) and (001)
from Ref. [71], for the (01 0) state from Ref. [72] and for
the (0 2 0) state from Ref. [73].

The line positions of three bands associated with the
(031) upper state (3vy+Vv3—2Vv,, 3vo+Vv3—V, and
3v,+Vv3) have been calculated using Hamiltonian para-
meters of Ref. [74]. The transition moment parameters of
the v,+vs; band [75] were used for calculation of line
intensities for the 3v,+Vv3—Vv, band. The line intensities
of two other bands were calculated with the transition
moment parameters of Ref. [74].

Band Spectral region (cm™!) Number of lines Sum of line intensities
(1022 cm~'/(molecule cm~2))
031-020 1632-1711 1109 1.747
022-020 1921-2067 1046 0.740
121-020 1984-2079 1817 14.342
130-001 1991-2061 3 0.005
130-100 2040-2102 10 0.026
201-010 2281-2325 11 0.004
031-010 2333-2407 742 0.477
022-010 2603-2769 1629 1.740
131-020 2666-2741 899 0.834
031-000 3032-3111 689 0.420
130-000 3133-3249 384 0.126
022-000 3256-3511 1826 1.234
121-000 3286-3480 1764 7.481
131-010 3369-3440 910 0.694
113-100 3506-3566 466 0.197
014-001 3525-3605 992 1.316
113-010 3864-3968 1466 4.398
014-010 3875-3968 183 0.076
320-010 3888-4000 279 0.175
202-000 4034-4207 1387 1.108
131-000 4065-4145 714 0.460
301-000 4179-4264 1213 2.489
221-000 4444-4525 1066 1.041
014-000 4522-4700 1998 1.638
113-000 4562-4668 1599 8.814
320-000 4586-4700 587 0.435
212-000 4700-4845 924 0.415
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Table 5
Updated ozone bands ('°03) in the GEISA-09 edition.

Band Spectral region (cm~1!) Number of lines Sum of line Intensities
(102! cm~'/(molecule cm~2))
111-100 1613-1849 1271 0.269
012-001 1616-1826 1581 0.645
111-001 1629-1854 1557 0.131
012-100 1637-1706 85 0.004
210-100 1701-2051 1663 0.198
210-001 1719-2066 388 0.015
003-100 1848-2104 1920 1.183
003-001 1867-2098 2847 1.313
102-100 1869-2071 2206 0.429
012-010 1872-2120 3794 3.221
201-100 1888-2243 2831 10.979
201-001 1896-2289 2165 0.331
102-001 1901-2086 2965 15.787
111-010 1918-2220 3520 43.121
210-010 2005-2353 3050 0.844
300-001 2012-2313 1804 0.921
300-100 2021-2288 2508 0.475
003-010 2254-2396 1809 1.199
102-010 2270-2407 479 0.040
130-010 2424-2552 487 0.019
012-000 2590-3025 3886 3.293
111-000 2626-3050 3604 25.087
121-010 2678-2774 1851 1.658
210-000 2704-3156 3327 0.812
003-000 2907-3202 4512 141.143
201-000 2919-3273 2706 7.910
102-000 2925-3196 4646 13.774
300-000 2955-3398 2445 0.472

The line positions of six bands associated with the
upper states (02 2) and (1 2 1) have been calculated using
the Hamiltonian parameters for the upper states from Ref.
[76]. The calculations of the line intensities of the
2Vo+2v3 and vi+2Va+Vs, 2Vvo+2 v3—V, and Vi +2v,+
V3—Vy, 2Vy,4+2v3—2v, and v{+2v,+V3—2v, bands
were made with the transition moment parameters from
Refs. [76-78], respectively.

The line positions of four bands of Table 4 and of all
bands of Table 5 (except the band v{+2Vv,+V3-V5)
associated with the upper states {(012), (111), (210),
(003),(102),(201), (130), (300)} have been calcu-
lated using the Hamiltonian parameters for the upper
states from Ref. [79]. The transition moment parameters
for the cold bands (2590-3400 cm~! spectral range) of
these states are given in Ref. [79]. The calculations of the
main part of the hot bands line intensities have been done
with the transition moments given in Refs. [75,78,80]. The
dipole moment transitions of the 2v;+Vv3 —Vj, Vi +2V3—V;,
and 3vs—v; bands can be found at the web sites of
the S&MPO system [81], similarly in Russia: http://smpo.
iao.ru/1446x915/en/tran/par/1/8-2/;  http://smpo.iao.ru/
1446x915/en/tran/par/1/8-3/, or in France: http://ozone.
univ-reims.fr/1446x915/en/tran/par/1/8-2/;  http://ozone.
univ-reims.fr/1446x915/en/tran/par/1/8-3/.

Three bands of the (13 1) upper state have been
calculated with the Hamiltonian parameters [82] and
the transition moment parameters [82,76,80] for the cold
and hot bands, respectively.

The line positions of the eight bands associated with
the upper states {(014), (113), (320)} and the line
intensities of cold bands have been calculated using the
Hamiltonian and the transition moments parameters
from Ref. [83]. The transition moment parameters from
Refs. [84,85] were used to calculate the line intensities of
the V1+Va+3V3—Vq, Vo+4V3—V3, and Vi+Va+3v3—V,
hot bands. Estimates of the transitions moments of the
4v3 and 3v;+ Vv, bands [86] were used for the calculations
of the line intensities of the v,+4v3—v,, and 3v;+
2v,—V; hot bands.

The calculations for the 2v;{42vs, 3vi+vs, 2vi+
2v,+Vv3 and 2v;+ Vv, +2Vv3 bands are based on the results
from Refs. [87-90].

Table 6 lists 9 bands in the 5935-6394 cm~! spectral
region. These results were obtained by using CW-CRDS
technique [91,92]. The spectra were recorded in Laboratoire
de Spectromeétrie Physique at the Joseph Fourier University
(Grenoble, France). The analysis and theoretical modeling of
these data have been reported in Refs. [92,93]. Note that the
6017-6131 and 6318-6394 cm ! spectral ranges are domi-
nated by a band labeled as 2v;+2v,+3vs. See Refs. [92,93]
for more details.

The spectral interval 1854-2768 cm~' has been
updated for the two isotopologues !0'°0!'80 and
16018016Q, this region relates to the bands: 2vs, vi+Va+
V3—V3, V1+V3, 2Vq, and Vi+Vy+Vs. Bands 2V3, V1+Va+
V3—Vs, 2Vq, Vi4+Va+Vs of 1801080 as well as bands
Vi+Va+Vs and vi+Va+Vvs;—vy of 1018010 have been
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Table 6
New GEISA-09 ozone bands ('°0s) from CW-CRDS spectra [91,92].

Band Spectral region (cm~1!) Number of lines Sum of line Intensities
(10~2% cm~'/(molecule cm ~2))
034-000 5935-6083 610 1.178
105-000 5971-6071 1006 2.456
124-000 6004-6363 1933 4.566
223,-000 6017-6131 1578 13.188
510-000 6030-6139 272 0.401
025-000 6225-6311 913 7.656
430-000 6295-6395 75 0.298
501-000 6301-6366 685 6.335
223,,-000 6318-6394 717 6.758

included in the GEISA-09 database for the first time.
The calculations of all bands of both isotopologues were
made using the Hamiltonian parameters for the lower
states for the (000) and (01 0) states from Ref. [94].
Hamiltonian parameters of the upper vibrational states
correspond to Ref. [95] for '°0'0'80 and to Ref. [96] for
160180160, The transition moment parameters of both
species, given by Barbe and De Backer-Barilly [97] have
been obtained from studies of Fourier-transform ozone
spectra enriched in oxygen-18. The broadening para-
meters (both air and self) for all B-type and A-type bands
were derived, respectively, from those of v; and v; bands.
These values are originated from the S&RMPO system [81]
(see Ref. [54] at http://smpo.iao.ru/1280x795/en/refs/9/
therein). These parameters are different from those reported
in HITRAN-08 [13].

The temperature dependence coefficient n=0.76 of the
air pressure broadening has been attributed to all the
transitions. The absolute intensities are obtained from
direct experimental measurements for each band (no
indirect normalization).

Line lists are given with a cutoff intensity of
1 x 10724 cm~!/(molecule cm ~2) at 296 K for 100% abun-
dances of '°0'®0'80 and '°0'80'°0. It has to be noted
that all the ozone data in GEISA-09 are given in natural
abundance of isotopologues.

2.2.4. N,0 (molecule 4)

The N,O line list has been almost completely revised.
Only the rotational part: 0.83-45.263 cm ' has been kept
from GEISA-03 (451 entries). All 50,182 lines of Toth’s data
[98-101] from the website: http://mark4sun.jpl.nasa.gov/
n2o.html, which cover the spectral range 525.462272-
7796.633112 cm ™!, have been included in GEISA-09 line
list. As a consequence, three new isotopologues have been
added: 1°N3°0, N'5N'80 and '>N'“N'80, representing a
total of 668 entries. The source of the N,O broadening
parameters are from Ref. [101] which gives N, and air
widths and shifts of N,O. These data were used to generate
the parameters used for the website http://mark4sun.jpl.
nasa.gov in 2004 under science data.

The N,O GEISA-09 archive now comprises 50,633
entries and eight isotopologues. This represents an
increase of 23,952 entries over GEISA-03 (26,681 entries).

The JPL catalog contains new entries for the rotational
transitions of N,O in its v,=0, 1, and 2 vibrational states
as well as for the singly substituted isotopologues in their

ground vibrational states. These entries are based in
particular on [102]. These entries will be considered for
the next update of GEISA.

2.2.5. CH4 (molecule 6)

Many of the infrared methane line parameters of >CH,4
were updated between 0 and 3300cm~!, but little
changes were made for the '3CH4 parameters. As noted
in Sections 1 and 2, entries for methane isotopologues
12CH;D and 'CH3D are included in GEISA as an indepen-
dent molecule, CH3D, numbered “23” (see Table 2);
related updates are described below. At the longer wave-
lengths, a minimum intensity limit of 10~2° cm/molecule
at 296 K was applied out of planetary considerations, but
the weak lines were still not included in the near-IR
regions. Misaligned fields in the near-IR quantum num-
bers were corrected, but only a few new assignments (and
thus lower state energies) were entered to existing
entries. Significant changes were made for air-broadening
coefficients between 5800 and 6180 cm ™.

Below 3300 cm !, new calculated '>CH, line positions
and intensities were obtained from the global analysis by
Albert et al. [103] of the three lowest polyads (ground
state, dyad from 900 to 1900 cm ! and pentad from 1900
to 3400 cm~'). In the far-IR, the intensities of ground
state-ground transitions were adjusted by 16% based on
Wishnow et al. [104], but no change was required for the
dyad-dyad (v, — Vs, Va— V4, V4—V4) hotbands. Some pre-
dicted pentad (2vg4, V2+ V4, V1, V3 and 2Vv,) positions were
recomputed using semi-empirical upper state energy
levels obtained by adding observed positions to calculated
lower state energies. The hot band parameters between
900 and 3500cm~! and of the Octad (3200 and
4900 cm ') were taken from GEISA-03 rather than the
global study because the prior database had better
accuracies for the strongest features in the interval; a
minimum intensity limit for hot bands was set to
10727 cm~!/(molecule cm~2) at 296 K.

The line list for methane near 6000 cm~' was some-
what improved using new measurements of intensities,
empirical lower state energies and broadening para-
meters of the stronger features. First, the intensities and
widths for the 5860-6180 cm ™! region were replaced by
results from Frankenberg et al. [105]. This also included
implementation of the empirical lower state energies of
Margolis [106,107] which were missing in GEISA-03.
In addition, lower state values from Gao et al. [108]
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were added. However, several thousand weak lines
(<10~2*cm~!/(molecule cm~2) are still missing be-
tween 5500 and 6180 cm~!. There are a number of
recently published and ongoing studies which will help
to improve the near infrared (4800-7700cm™!) line
parameters [109-118].

For broadening, relatively few ( <3000) direct mea-
surements of widths and pressure shifts are available for
methane transitions so that default values for self- and
air-broadened widths, air-induced pressure shifts and
temperature dependences are applied (similar to those
used in earlier versions of GEISA see [119,120]. For the
7.5 um region of the Dyad, new measurements of ~500
transitions from Smith et al. [121] were inserted for self-
and air-broadening widths, shifts and temperature depen-
dence of widths. For the 3.3 um region of the Pentad,
~3800 theoretically predicted broadening coefficients
(air-widths, pressure shifts and temperature depen-
dences) from Antony et al. [122] and ~500 prior mea-
surements [119] were inserted for vs. At 2.3 um (the
Octad), the self- and air-broadening parameters of Predoi-
Cross et al. [123,124] were retained in the list carried over
from the GEISA-03 database.

In the 1.66 um region (the Tetradecad) over 480 air-
broadened widths and shifts and some temperature
dependence were inserted between 5560 to 5860 cm '
[111], while the scaled N,-broadening reported by
Frankenberg et al. [105] were used from 5860 to
6184 cm~!. Otherwise, defaults constants of 0.75 below
5860 cm~! or 0.85 above 5860 cm~! were set for the
temperature dependence.

Lastly, the current methane database is customized to
interpret atmospheric remote sensing of the Earth.
Further near-IR analyses will be needed for planetary
and stellar applications. (e.g., [125]). Calculations of
partition functions [126] and much weaker transitions
can be found at http://www.iao.ru/mirs or http://icb.
u-bourgogne.fr/JSP/TIPS.jsp. However, extrapolations to
higher values of quanta provide less accurate parameters,
particularly for the intensities.

2.2.6. 0O, (molecule 7)

Line parameters for the oxygen A-band (b'Z; «X>%; )
were revised for '°0, and '°0'80, and those of 60'70
were added in the 0.76 um region. The line positions,
intensities, air- and self-broadened half-widths and air-
induced pressure shifts were taken from the work of
Robichaud et al. [127-130] who performed CW-CRDS
of the P branch. The positions now have accuracies
of 0.00006 cm~! or better for '°0, and '°0'%0 and
0.00050 cm~! for '°0'70 through calibration against
atomic potassium calibration standards [131]. The differ-
ences between the old and new positions are on average
0.0007 cm~! [127] for 0, and 0.002 cm~! [129] for
160170, but much larger for '*0'®0 (up to 0.20cm™1!)
because the latter were based on 60-year-old results
[132].

Line intensities changed only slightly for the first two
isotopologues: —0.8% for 1°0,, +1% for 1°0'80, but + 5%
for '°0'’0 (depending on the rotational quanta). The

accuracies are thought to be + 1% or better for the first
two species, but more study is needed for '°0'70.

For all three species, the widths are computed via an
expression from Yang et al. [133]

B
HWHM =A+ 1+c1) +caJ?+c3)? @
by using the 0, constants from Table 6 of Robichaud
et al. [128] based on retrievals done with Galatry (not
Voigt) profiles. For the widths, the values at high quantum
numbers (J > 22), previously in error by more than 40%
near /=30, are now thought to be accurate to + 2%.

Pressure-induced shifts are still rather uncertain
( +0.003 cm™!) with different studies in poor agreement
(e.g., [129,134,135]). For the interim, the measured
A-band pressure shifts of Robichaud et al. [127] for the
P branch and the averages of shifts from Predoi-Cross
et al. [134,135] for the R branch were inserted, along with
the temperature dependence of widths from Brown and
Plymate [136].

Finally, it should be emphasized that even with these
improvements, the line parameters are not sufficient to
reproduce atmospheric observations at 13,100 cm ™!
because Voigt line shapes are inadequate. The combined
analyses of Tran and Hartmann [137], Predoi-Cross et al.
[134,135] and Robichaud et al. [128-130] have demon-
strated the need to consider line mixing, Galatry and/or
speed dependence line shapes in order to model the
oxygen A-band properly.

It has to be noted that the revised O, GEISA-09 line list
does not derive from the GEISA-03 line list, but from the
HITRAN 2004 [13] one. The major difference between
the two line lists is for the intensity values, especially in
the 1.27 pm spectral region (Ref. [32] of Ref. [8]). As an
unfortunate consequence of this alternate line list inclu-
sion (due to a final mis-manipulation among different
generated test files for data validation studies), the two
lines closest to the y band head (at 15,927.701 and
15,927.805 cm~!), present in GEISA-03, are now detri-
mentally missing in GEISA-09, propagating a technical
error occurring in HITRAN 2004. This must be fixed in the
next GEISA edition.

2.2.7. NO (molecule 8)

The GEISA-03 NO line list has been totally replaced by
a new one provided by Goldman [138]. The new line list is
partially based on the work described by Goldman et al.
[139], and is equivalent to the updated NO in HITRAN-08
[13]. The updates mainly consist of: including, for the first
time, Einstein-A coefficients to replace, in format field M,
the former GEISA-03 transition probabilities (see
Table 11) and the implementation of hyperfine splitting
for the microwave and far infrared lines. Magnetic dipole
satellite transitions between spin components of the
electronic ground state have also been added, and are
further identified by the letter “m” in the first field for the
upper state quantum numbers. When lines with resolved
hyperfine structure were not available from Ref. [139],
they were taken from the JPL catalog [16].

These updates have increased the total number of NO
transitions in GEISA from 99,123 to 105,079 (293 bands).
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2.2.8. SO, (molecule 9)

Sulfur dioxide, SO, is well known to be both of astro-
physical and planetary importance. SO, is an important
constituent on Venus [140-144] and lo [145-148], where
it actively participates in the photochemistry of their atmo-
spheres. It has also been observed in comets [149-152]. In
the terrestrial atmosphere, SO, is a trace species produced by
both anthropogenic and natural sources; mainly present in
the troposphere [153-155], it is a primary pollutant emitted
by fuel combustion and responsible for the production of
acid rain. The most important natural sources of SO, are the
oxidation of sulfur compounds from oceans and marshes
and from volcanic eruptions and outgassing. Most volcanic
SO, emissions remain in the troposphere where the lifetime
of the species strongly depends on the meteorological
conditions. After major volcano eruptions, SO, is also present
in the stratosphere [156-157] in high concentrations, where
it is converted into sulfate aerosols which affect both strato-
spheric chemistry and climate. SO, has been detected on Io
in the microwave and more recently at 19 pm [158]; this is
of high relevance to the studies of exchanges between the
atmosphere and the surface of the satellite.

The GEISA-03 database provided SO, parameters in
seven different spectral regions, which correspond to transi-
tions in the microwave region and the 19.3, 8.6, 7.3, 4, 3.7
and 2.5 pm spectral regions. However in the 19.3, 8.6 and
7.3 um spectral regions new studies [159-162] have been
performed improving the corresponding spectral para-
meters. These three spectral regions are important for SO,
measurements in atmospheres. The 7.3 pum which is the
strongest SO, infrared region unfortunately cannot be used
for ground measurements of SO, since it is severely over-
lapped with the strong v, band of water vapor. On the other
hand, the v; band, although about nine times weaker
corresponds to a rather clear atmospheric window. Finally
the rather weak 19.3 um region can be used for retrieving
SO, in the atmosphere of planets [158].

Based on the new studies an improved line list including
line positions, intensities, transition assignments and lower
state energy levels has been generated. It includes not only,
for the main isotopologue 32SO,, the cold bands v-, v; and
v3, but also the corresponding hot bands 2v; — v, 3v, —2v5,
Vi+Va—Vy and Vv3+Vvy—V, as well as the vy, vs,
Vi+Va—Vs, Va4V3—Vy, Vi+V5 bands of 34S0,, from the
results of a series of papers [163-165] devoted to the high
resolution study of the absorption of the 4SO, species in the
infrared. The resulting newly archived 34SO, spectral line
parameters are much better than the previous ones, related
only to the v;+Vv3 band. The accuracy for line positions is
estimated to be better than 0.001 cm~'. For line intensities
the accuracy is estimated to be of the order of 2-3%
degrading up to about 15% for high J or K, transitions.
Finally, the GEISA-09 SO, line list comprises a total of
68,728 lines among which 43,941 are new or updated
entries. From GEISA-03 have been kept 24,787 entries of
the main isotopologue 32S0,, in two distinct spectral
regions, i.e., 0.017394-256.241135cm™! (9622 rotational
lines) and 2433.192300-4092.948220 cm~! (15,165 lines).

As far as the pressure broadening coefficients are
concerned the situation is different for air-broadening
and self-broadening coefficients.
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Fig. 5. 2SO, Lorentz air-broadened half-width parameters (at 296 K)
(@ Microwave, ‘ v3 band, B v, band) versus the quantum number J of
the lower level of the transition.

For the air-broadened half-width coefficients (HWHM)
it turns out that it was only possible to estimate an
average value for this parameter. In fact no variation of
this parameter with respect to the lower quantum num-
bers J or K, of the transitions could be determined. As an
example, Fig. 5 presents the measured parameters
(Y-axis) with respect to the lower quantum numbers J of
the transitions (X-axis), for the microwave and the v; and
v; bands spectral regions. It appears not possible to derive
any clear variation (the same is true when these para-
meters are plotted versus the quantum number K,) so
only an average value of 0.1025cm~!'atm~! could be
determined. This value has been used for all the updated
lines of isotopologue 32S0,; in the case of isotopologue
3450,, the value 0.1000 cm~ ' atm ! has been attributed
to the lines of v;+v3; The GEISA-09 missing value
—0.9999 cm~!'atm~! has been given to the lines of
v,+V3—V, for both isotopologues. Related with the
entries remaining from GEISA-03, the average value is
0.1000cm~'atm~! for the 9622 rotational lines and
0.1100 cm~ ' atm ! for the other 15,165 lines.

The situation is quite different for the self-broadening
parameters. It was possible indeed to observe a clear
variation of these parameters with respect to the K,
quantum number of the lower state of the transitions
(see illustration in Fig. 6 for the vy, v,, and v; bands, with
a display similar to Fig. 5). On the other hand no variation
with respect to the quantum number J could be observed.

Based upon these results, it was decided to include in
the database the following values for the self-broadened
half-width coefficients:

HWHM,r=0.4 cm~!/atm for K, < 5
HWHM;e;=0.156 cm~!/atm for K, > 21

HWHMs,j¢ is calculated through a linear interpolation
for 6 <K, <20

For the updated transitions, these new parameters
have been used for all the lines of main isotopologue
3250, except for those of band v,+Vv;—v, for which the
GEISA-09 missing value —9.9999 cm~!atm~! has been
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given to both isotopologues, as well as to 83 lines of
isotopologue 3S0O, in the spectral region 1165.402-
1379.267 cm .

For the GEISA-03 retained transitions, the missing value
has been attributed to the rotational transitions and the
default value 0.39 cm~' atm ! to all the other ones

As a consequence, an accuracy of 10-15% for the newly
updated air-broadening and self-broadening parameters
seems reasonable.

Finally, a “standard” default value of 0.75 has been
used for the temperature dependence coefficient n of the
air-broadening halfwidth.

It is worthwhile mentioning that the CDMS catalog
provides an entry for v, which is based on extensive
rotational transitions in its v,=0 and 1 states [166] along
with previous IR data. This entry may be the basis for a
GEISA entry in the next update.

2.2.9. NO; (molecule 10)

The study by Perrin et al. [167] provided accurate line
positions and absolute intensities for several NO, bands,
including the v, and vs fundamentals and their associated
hot bands. Benner et al. [168] obtained precise line
positions and relative intensities for the v3 band including
accurate determinations of position differences for a large
number of spin-splittings. In addition, air-broadened half-
width and air-induced pressure shift coefficients and their
variations with temperature were also determined for
over 1000 transitions. These two studies [167,168] were
combined to form an updated NO, line list at 6 pm. The
positions and absolute line intensities are retained to
values from Ref. [167] for the v; band transitions, while
the measured values of half-width, pressure-induced shift
and the temperature dependence exponents of half-width
coefficients were inserted line-by-line.

For all other transitions the values calculated using the
empirical expressions of Ref. [168] were applied for the
half-width, pressure shift and their temperature depen-
dences. Values for higher K, quantum numbers were
constrained to the highest measured K, (K,=9 for half-
width and K,=7 for pressure-induced shift coefficients).

No pattern was discerned for the air-broadening tem-
perature dependence exponents, and a simple linear
equation in m (m=N" for P and Q branch transitions
and N”+1 for R-branch transitions) was fit to the mea-
surements. For selected widths, the RMS deviation was
2.5%. In GEISA-03, the air-broadened half-width coeffi-
cients of all transitions were set to a default value of
0.067 cm~'atm~! at 296K, the self-broadened half-
width coefficients to 0.095cm~'atm~! at 296K, air
induced pressure-shift coefficients were set to zero and
the temperature dependence exponents of air-broadened
half-width coefficients were set to a default value of one.
In the new database at 6 um, only the self-broadened
half-width coefficients remain as default values
(0.095cm~!'atm~! at 296 K), as was done in [8,9]. The
NO, line lists are similar in GEISA-09 and HITRAN-08 [13].

2.2.10. NHs (molecule 11)

The line parameters given in GEISA-03 for the spectral
interval 0.058-5294.502 cm~' from Kleiner and Brown
[169] and described in Kleiner et al. [170] have been
slightly revised in GEISA-09, on the basis of an updated
line list issued soon after the final completion of GEISA-03
final process. The NHs line lists are similar in GEISA-09
and HITRAN-08 [13] except for duplication of two lines in
HITRAN, at 4561.037254 cm~! and 4568.372254 cm ™~ '.

2.2.11. PH3 (molecule 12)

Phosphine has been detected in the atmosphere of
both Jupiter and Saturn [171,172] and is a significant
absorber in the 5 pm window in Jupiter where it was used
to probe the deeper atmosphere [173]. Features of PHj
near 3425 cm ! are clearly seen in ground-based spectra
of Saturn [174,175], and line parameters for these bands
are needed for the interpretation of data recorded by
VIMS on the Cassini spacecraft [176].

Based on the work of Butler et al. [177], 9 new bands
have been added in the region from 2724 to 3602 cm™!,
representing an increase of 8359 entries since GEISA-03 PH3
archive. The collision-broadened parameters of the 770 to
2472 cm~! spectral range have been updated using the
results in Ref. [177]. Over 8000 line positions and intensities
of phosphine, between 2724.477 and 3601.652 cm ™!, were
measured at 0.0115 cm ! resolution.

Quantum assignments were made to most of the
eight interacting vibrational states: 3v, (2940.8 cm™1),
2va+Vvy (3085.6cm™1), va+2vy (32149 cm™ ), vi+Vvy
(3307.6 cm™ 1), vo+V3 (3310.5cm™ 1), 3v, (~ 3345cm™ 1),
V1+V4(3426.9 cm ™), and v3+ V4 (3432.9 cm~!). However,
a recent global study of PH3; by Nikitin et al. [178] demon-
strated the complexities of modeling this region and
revealed the need to investigate the consistencies between
band intensities at 5 and 3 pm.

2.2.12. HNO;3 (molecule 13)

A very important improvement has been brought to the
entire list of lines of HNOs. The entire GEISA-03 content
(171,504 entries in the spectral range 0.035141-
1769.982240 cm~!) has been replaced with data originating
from two different sources, i.e., from Perrin [179], in the
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spectral range 0.011922-769.982240 cm !, and from Petkie
[180] in the spectral range 0.155640-527.247646 cm .

In Perrin’s work, an improved set of line positions, line
intensities and line broadening parameters was generated
in the infrared spectral region, using new and accurate
experimental results concerning line positions and line
intensities as well as sophisticated theoretical methods.
The present update was performed in two steps,
described in Refs. [181,182], respectively.

The first study [181] was performed in the 820-
1770 cm ! spectral range covered by the MIPAS instru-
ment and the results of this first update are summarized
in Table 5 of Ref. [181]. The line positions have been
improved for the vs and 2vg cold bands and vs+vg—Vvg
hot band around 11.2 pm and for the vg+vg and vg+vVvy
bands around 8.3 pm (see details in Refs. [181,183] and in
Refs. therein). In addition, the line intensities were
updated in the 11.3, 8.3 and 7.6 um spectral ranges by
making use of the cross-sections measurements per-
formed in Ref. [184].

The results of the second update are described in
Table 1 of Ref. [182]. The intensities for the v and vg
bands centered at 646.826 and 763.154 cm™, respec-
tively, were decreased by about 20-30% as compared to
GEISA-03. Near 11.3 pm approximate parameters for the
Vs+V7—Vy and Vs+ Vg — Vg hot bands have been added to
the line list for the first time. Also a complete update of
the air-broadening parameters was performed in the
11 pum region following recent line-broadening calcula-
tions [185]. It should be noted that the air-broadening
parameters implemented in the narrow Q branches of the
vg and Vs+Vg— Vg bands at 763.154 and 885.425cm™,
respectively, account empirically for line mixing effects as
evidenced by laboratory measurements.

The validation of these updates in the new line list
was performed during several ground based, balloon
borne or satellite measurements of atmospheric HNOs
[181,185,186].

Future studies should concentrate to the improve-
ments of HNO; line parameters in the 7.6 um region.
Indeed this region which corresponds to the v; and v4
bands located at 1325.7354 and 1303.5182 cm ™!, respec-
tively, needs major updates in term of line positions and
intensities. Also, the previous studies in this region [188]
did not consider resonances due to several dark states
which perturb the 3! and 4! energy levels.

The cataloged spectral parameters of nitric acid have
been updated in the millimeter/sub-millimeter-wave and
22 um far-infrared regions. The calculated line para-
meters are based on the spectroscopic constants derived
from the analyses of millimeter and sub-millimeter wave
rotational spectra found in Refs. [189-191]. All predic-
tions were calculated using the SPCAT program package
[192]; (http://spec.jpl.nasa.gov/ftp/pub/calpgm/spinv.pdf)
for a temperature of 296 K, an isotopic abundance of
0.989, a rotational partition function of 27,343, and a
vibrational partition function of 1.304 [193].

In the mm/sub-mm-wave region, the pure rotational
transitions from the vibrational states with band origins
below 1000 cm~! have been included in this update.
These vibrational states account for about 97% of the

thermally populated molecules at 296 K. This includes
transitions in the ground state, vg=1, v;=1, vg=1, vg=1,
and the interacting vs=1/vg=2 dyad. The details of the
analyses and measurements can be found in Refs.
[189,190] and the set of references contained therein.

In the 22 pm far-infrared spectral region, line para-
meters for the fundamental vg band as well as the two hot
band vg—vg and vs—vg have been updated. Line posi-
tions for the bands were calculated from the rotational
analyses in Refs. [189,190] and the band origins deter-
mined in Refs. [183,194]. The high-resolution far-infrared
spectrum in Ref. [195] was used both as a stringent test
of the predicted far-infrared transition frequencies and
to determine the relative intensities of the hot bands
referenced to the intensity of the fundamental vg band
determined in Ref. [193]. Details of the far-infrared
simulation can be found in Ref. [191].

The new HNO3 GEISA-09 line list has been processed as
the following: starting from Perrin’s line list [179], Petkie’s
data have been included [180], replacing the Perrin’s values
for transitions with same quantum identifications. The
final GEISA-09 HNOs line list comprises 669,988 entries
in the spectral range 0.011922-1769.982240 cm ™.

2.2.13. OCS (molecule 20)

Substantial revisions involving five isotopologues
160‘12c325, ]6012c34s' 16013c325’ 160]2(:335, and ]80]2c325
provide new parameters for some 50 bands between 3800
and 4200 cm~!; 13 allowed and two forbidden bands arise
from the ground state while the remainders are hot bands.
The number of transitions increases from ~ 1100 transitions
(for 2vs of five isotopologues and the v,+2v3—vVv, of
16012325 and '90'2C34S) to 10,425 lines. Most of the line
positions are calculated using the effective rovibrational
energy constants based on a global analysis [196-200] whose
line position accuracy was reported to be 5x 1075 cm™!
[196]. The calculated line intensities are taken from analyses
of new FTIR measurements [201-202] performed at JPL to
support Venus studies. Sung et al. [201] reported line
intensities of the 2v3 band at 4101387 cm ™}, V{+2V,+ V3
at 3937427cm~', and 4v,+vs at 4141212cm~' of
16012325, The new band strengths are in good agreement
(1.3%) with the prior studies by Bermejo et al. [203] and
Naim et al. [196]. Intensities of all the other bands are
determined by Toth et al. [202] with many bands being
measured for the first time, and their uncertainties range
from 1% to 6% depending on bands. The line intensities vary
through five orders of magnitude, but very weak unassigned
features are omitted from the database pending further
analysis.

The air- and self-broadened half-widths are computed,
respectively, using Refs. [204-207]. The self-broadened
temperature dependence exponents of v; from Bouanich
et al. [207] are also applied for the broadened half-width
coefficients in this region. For the transitions whose ]
values are greater than 65 and 75, their air- and self-
broadened half-widths coefficients at 296 K are set to 0.12
and 0.0817 cm~!/atm, respectively [208]. Air-induced
pressure shift coefficients for 2vs band of OCS reported
by Domenech et al. [209] are inserted for the first time.
In a separate parameter file, the air-broadened OCS



2412 N. Jacquinet-Husson et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 2395-2445

= 201 H.CO
2 GEISA-2009
£
=
. 10
‘@
[ =
o
£

04

1700 1800 2600 2800 2800 3000

= 204
c
=
a GEISA-2003
g %
:; 10 4
‘w
c
I
=

0 I ol 1 7 A T d T

1700 1800 2600 2800 2900 3000

Wavenumber in cm'”

Fig. 7. Overview of the H,CO line parameters in the 5.7 um and 3.6 pum spectral regions. Lower and upper traces describe the status in GEISA-03 [8,9] and

in GEISA-09, respectively.

half-width coefficients are replaced by CO,-broadened
half-width coefficients, using the measurements of Boua-
nich et al. [210] in the v; band of OCS. This second
database is intended to support remote sensing of Venus
at 2.4 pm and is archived in a GEISA-09 complementary
files line list.

2.2.14. H,CO (molecule 21)

Formaldehyde (H,CO) in the atmosphere can be
retrieved in the 5.7 um region by MIPAS aboard the
ENVISAT satellite [211] and by the ACE-FTS instrument
on board the Canadian satellite SCISAT-1 at 3.6 pm [212].
For this reason the major update for H,CO in the infrared
region which consists of the complete replacement of
the line positions and line intensity parameters near
3.6 um and the addition of a line list in the 5.7 um
region [213].

The line positions were generated using the models
and the parameters described in details in Refs. [214,215]
for the 5.7 and 3.6 um, respectively. The 5.7 um corre-
sponds to the v, band together with three dark bands. In
the 3.6 um region the lines belong to the v; and vs bands
together with nine dark bands. In addition, a consistent
set of line intensity parameters was generated for both
the 5.7 and 3.6 um spectral regions [213] from analyzing
high-resolution Fourier transform spectra recorded in the
1600-3200 cm ! spectral range.

The calculated band intensities derived for the 5.7 and
3.6 um bands are in excellent agreement with the values
achieved recently by medium resolution band intensity
measurements.

Compared to the GEISA-03 database which contains
only 1161 lines near 3.6 um, the quality of the line
parameters in GEISA-09 is significantly improved in terms
of both the positions and intensities. Details giving the
description of the new database which involves 3713 and
31,796 transitions at 5.7 and 3.6 pum, respectively, are
given in Table 9 of Ref. [213]. A subsequent and comple-
mentary study dealing with measurements and calculations

of formaldehyde pressure induced self- and N,-broadened
half-width coefficients is in progress [216].

Fig. 7 illustrates the extended H,CO line parameter
information included in GEISA-09. Comparative absorp-
tions as synthetic spectra (intensity, in similar arbitrary
unit, along the Y-axis, versus wavenumber along the
X-axis), are displayed in the 5.7 pm and 3.6 pm spectral
regions, corresponding, respectively, to GEISA-03 (red
curve) and GEISA-09 (blue curve) archives.

2.2.15. C,Hg (molecule 22)

The GEISA-03 line list for the 12 um region of ethane
contained data for the vg fundamental band of '2C,Hg,
from a 1992 analysis by Daunt et al. [217], and the vq;
fundamental band of 13CH§2CH3, from a high-resolution
work by Weber et al. [218,219]. In the updated 2009
edition, only the line list for the v, band of '3CH3°CHs
has been kept; the data for the vg band of '?C,Hg has
been replaced with a new list which includes a total
of 21,607 lines belonging to the vg, 3v4, Vg+V4— V4, and
Vo+2V4—2v4 bands (v4 is the torsional mode near
289.3 cm™!). It was generated by Vander Auwera et al.
[220] using a spectrum of the vg band recorded at the
PNNL [221], results from a global analysis of data invol-
ving the four lowest vibrational states of ethane [222]
and measurements of pressure-broadening parameters
[223,224]. Details can be found in [220]. As a result, the
sum of the line intensities and wavenumber coverage in
the 12 um region are increased from 5.881 x 107'? to
1.011 x 108 cm~!/(molecule cm~2) at 296 K (natural
abundance) and from 725.6-918.7cm~! to 706.6-
961.2cm ™', respectively. As shown by Nixon et al.
[225] and Coustenis et al. [226] based on Cassini CIRS
(http://cirs.gsfc.nasa.gov/) data, the new list for the 12 um
spectral region of !2C,Hg constitutes a significant
improvement over the previously available data, leading
to the first measurement of '2C/'3C isotopic ratio of
C,Hg in the atmosphere of Titan. It can be mentioned
that C;Hg acts as the main catalyst in photosensitized
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dissociation in Titan’s stratosphere, as shown by Wilson
and Atreya [227].

Note that the quantum number notation for represent-
ing rotation-torsion states has evolved since the GEISA-03
edition. In [220], the levels are identified by ], the
quantum number for the total angular momentum of
the molecule, K, the quantum number for its component
along the symmetry axis, ¢, the quantum number asso-
ciated with the vibrational angular momentum of the
degenerate mode vy, and o=0-3 which labels the tor-
sional sublevels. In the new line list archived in GEISA-09,
the latter is replaced by the symmetry species A;s, Ags,
Ass, Ass, Eis Eae Ese Ege and G in the Gsg extended
permutation-inversion group. Because all the allowed

Table 7

species are s-species, the letter ‘s’ is omitted: for instance,
Ei;s symmetry is given as ‘E1’ and As+A,s is given as
‘A12’. The symmetry of the vibration-rotation-torsion
levels of '2C,Hg corresponding to the excitation of vg
and vy is given in Table 7. This new notation is common to
GEISA-09 and HITRAN-08 [13]. In GEISA-09, the former
notation has been kegt for the not updated v;, funda-
mental band of '3CH3 CHs.

Vander Auwera et al. [220] determined absolute line
intensity information by matching to low-resolution
cross-sections. They indicated that the best match
between high-resolution spectra of the vg band of pure
ethane and spectra calculated at the same experimental
conditions using the generated line list could be obtained

Symmetry in the G;G extended permutation-inversion group of vibration-rotation-torsional levels of '2C,Hg involving the excitation of the vg bending

and v, torsional modes of vibration.

(a) vg=even, vy=even

K ] =0 o=1 o=2 c=3
0 Even Ays (6) Eszs (2)

0dd Ay (10) E4s (6)
6n+1 Gs (16) Eis (4)
6n+2 Eis (4) Gs (16)
6n+3 E35+E4s (8) A15+A25 (16)
6n+0 Aqs+Ags (16) E3s+Ess (8)

(b) vg=even, v4=o0dd

K J =0 o=1 o=2 c=3
0 Even Ass (6) Ess (2)

0Odd A4 (10) E4s (6)
6n+1 Gs (16) EZS (4)
6n+2 Eazs (4) Gs (16)
6n+3 E35+E4s (8) A35+A45 (16)
6n # 0 Aszs+Ags (16) Ess+Eas (8)

(c) vg=o0dd, v4=even

G K J =0 g=1 c=2 c=3
0 >0 Even Ass (6) Ess (2)

0dd As5 (10) Ess (6)

<0 Even Ay (10) E4s (6)

Odd As; (6) Ess (2)
6n+1 Gs (16) Ezs (4)
6n+2 Eas (4) Gs (16)
6n+3 E35+E4s (8) A35+A45 (16)
6n+0 Aszs+Ags (16) E3s+Ess (8)

(d) vo=o0dd, v4=o0dd

G K J =0 g=1 o=2 o=3
0 >0 Even Aqs (6) Ess (2)

Odd Ay (10) Ess (6)

<0 Even Az (10) E4s (6)

0dd Axs (6) E3s (2)
6n+1 Gs (16) Eis (4)
6n+2 Eis (4) Gs (16)
6n+3 E3s+E4s (8) As+Azs (16)
6n+#0 Ags+Ays (16) E3s+Eas (8)

J and K are, respectively, the quantum numbers associated to the total angular momentum of the molecule and its projection along the molecule top
3-fold symmetry axis, c=0-3 is the torsional index and G=K— ¢ >0 with ¢{= + 1 the vibrational angular momentum quantum number associated to vg.
n > 0. The nuclear spin statistical weights are given in parentheses [218]. Empty cells correspond to non-existing levels.
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provided the line intensities were reduced by about 9%.
Very recently, Devi et al. [229] carried out extensive
measurements of spectral line parameters in the vg band
of 2C,Hg. They showed that their high-resolution line
intensities were 10-15% lower than those in the line list
of Ref. [220]. These observations seem to indicate that the
line intensities in GEISA-09, and also in HITRAN-08 [13],
are probably 10-15% too high. Note that the Devi et al
[229] work also provides improved characterization of the
temperature dependence of the N,- and self-broadening
parameters, which will be applied in future editions of
databases.

In the 3.3 um region, the v; fundamental band of
12C,Hg exhibits a number of strong unresolved Q-
branches (PQ4 to 'Q4), observed between 2973 and
3001 cm~!. GEISA contained a list of 421 lines belonging
to the PQ; branch observed near 2976 cm !, generated by
Pine and Rinsland [230]. To complement this rather
limited information, the line positions and intensities
determined for the other strong Q-branches by Goldman
et al. [231,232] have been added to this edition, even
though the data are now quite dated and only allow a
rather approximate modeling of the observed structure of
the branches. The other line parameters have been set to
the same values as for the vg band. The quantum number
labeling of all the levels and the symmetry of torsionally
split levels are also defined as for the vg band. The
symmetry of levels involving unresolved torsional com-
ponents is expressed using the species of the D34 group,
i.e.,, Aig (8), A1y (8), Axg (16), Az, (16), Eg (20) and E, (20)
(the numbers between parentheses are the nuclear spin
statistical weights [228]). Recent studies [233,234-236]
are becoming available for infrared ethane. For the
important atmospheric region at 3.3 pum, Harrison et al.
[233] measured absorption cross-sections for both pure
ethane and mixtures with synthetic dry air at a number of
temperatures and pressures appropriate for atmospheric
conditions. These data were later converted to line-by-
line parameters by Toon [234] with lower state energies
estimated from the recorded spectra [233]. Two theore-
tical analyses interpreted high resolution spectra and
modeled the observed positions. Di Lauro et al. [235]
predicted positions and relative intensities of seven bands
at 7 um while Lattanzi et al. [236] extended assignments
in four bands at 3.3 pm and modeled those line positions.
Both studies are reporting new databases applicable to
atmospheric remote sensing with the caveat that the
intensities must be studied further and that unassigned
observed features are not yet included.

2.2.16. CHs3D (molecule 23)

This GEISA independent molecule (see the section
Introduction and Table 2) involves methane isotopologues
12CH5D and '3CH;D. For the GEISA-09 modifications, nine
new infrared bands were added at three different wave-
lengths (8, 2.9 and 1.56 um). In addition, a far-IR predic-
tion (version 1) from the CDMS database [17], based on
frequencies reported by Lattanzi et al. [237], was
included. The '3CH3D species was added to the database
for the first time because the isotopologue '>CH3;D was
recently detected in Titan’s stratosphere [238], using

Cassini/CIRS infrared spectrum near 8.7 pm. Fitting simul-
taneously the vg band of both *CHsD and >CHsD and the
v4 band of CHy, this detection allowed a precise determi-
nation of the D/H ratio in methane and yielded a '2C/!3C
ratio in '>CH5D consistent with that measured in normal
methane.

A prediction of the >CH;D triad (v, v3 and vs) between
952 and 1694 cm~! was based on the line positions and
energy levels analysis by Ulenikov et al. [239]. The inten-
sities were calculated using the transition dipole moment
parameters of the '>CHs;D from Brown et al. [240]. The
calculations were limited to J=K=18 as they are the
maximum quantum numbers covered by the experimental
rovibrational term values published in Ref. [239].

Titan and Saturn observations [241,242] also revealed
the need for additional parameters at 2.9 pm. Six new
12CH;D vibrational bands (v, + V3, Va+Vs, Va+ Vg, V3+2Vg
and 3vg) were included for the first time from the analysis
of positions and line intensities of by Nikitin et al. [243].
Finally, the Boussin et al. [244] empirical line list in the
3v, region at 1.56 um was included. The self- and air-
broadened widths were generally applied using empirical
formula obtained from '2CH5D triad measurements [245];
however, self- and air-broadened widths and shifts
observed by Boussin et al. [244] were used for 3v,. For
temperature dependence of widths, CH, values averaged
by J [119] were used as a rough estimate. Additional
laboratory and theoretical studies are needed to complete
and improve the new mid- and near-IR parameters.

2.2.17. CoH5 (molecule 24)

Acetylene has been identified in some of the giant
planets and Titan since the mid-1940s, and recently has
been quantified by the Galileo (http://nssdc.gsfc.nasa.gov/
planetary/galileo.html) and Cassini-Huygens missions.
Up to now, the data available in GEISA for acetylene
isotopologues, namely '?C,H, and '?>C'3CH,, were limited
to the lower energy region of the spectrum, up to 3 pm
(note that the CHD molecule has a different code, i.e.,
“48”, than the one of C;H,, i.e., “24”; see Table 1). This
new edition sees the extension of data into the near
infrared range for these two isotopologues, with the
inclusion of a list of line parameters generated by El
Hachtouki and Vander Auwera [246] and Jacquemart
et al. [247,248]. In the 1.5 pum region, corresponding to
the simultaneous excitation of the symmetric and anti-
symmetric C-H stretching modes v; and v3, respectively,
the line list was created following the high-resolution
intensity study [246]. The identification of the lines, their
positions and lower state energies are from Kou et al.
[249], and the line intensities are calculated using the
parameters of Table 7 of [246]. Note that there is a
mistake in [246]: the isotopic abundance used for
12C13CH, is a factor 2 too small; it should read 0.02176
instead of 0.01088. As a result, the vibrational transition
dipole moments of '2C'3CH, listed in Tables 6 and 7, and
in Fig. 7 of [246] are a factor 2 too large. The list included
in GEISA-09 contains the corrected values. Also, a large
update has been performed for the '2C,H, isotopologue
and led to new data in nine spectral regions, namely, in
the regions around 3.8, 3, 2.5,2.2,1.9,1.7,1.5,14, 1.3, 1.2,
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and 1 pm. The new line lists are described in details in
Refs. [247,248]. Corrections of the 2.5 and 3.8 pm spectral
regions of ?>C,H, have also been performed [250,251]
and are described in Ref. [247]. Table 8 summarizes
the number of new bands (cold/hot in column 2) and
transitions (column 3) of the spectral regions added in
GEISA-09, together with the intensity ranges (incm~!/
(molecule cm~2)) and spectral domains involved (in pm
in the first column and in cm~! in the fourth column). It
has to be noted that no transitions are unidentified so that
the lower state energies are calculated using the spectro-
scopic constants from Kabbadj et al. [252].

Fig. 8 illustrates the noticeable improvements brought
to GEISA-09. The information is displayed as the follow-
ing: spectral regions corresponding to existing (or in
project) CoH, spectroscopic data are identified by vertical
rectangles perpendicular to 3 horizontal axes, with spec-
tral region mean value given at the center of each figure;
on the 3 horizontal axes are given, downwards: the
spectral range extend in two units, pm (top axis) and

Table 8
Summary of the bands and transitions added for the 12C,H, molecule in
the GEISA-09 database. Reference temperature is 296 K.

Spectral Number of Number of  Spectral Intensity range
region  bands® transitions® domain (cm™1/
(um) (cold/hot) (cold/hot)  (cm~1) (molecule cm~2))

3.8° 2/3 90/331 2499-2769 10-2'-1072°
3¢ 0/18 77 €/1971 3139-3398 107201026
2.5° 4/5 450/720 3762-4226 10-2'-10-%7
2.2°¢ 4/4 254/392 4421-4798 10-22-10-%°
1.9 7/0 539/0  5032-5567 10-24-10-26
1.7 2/4 175/350  5692-6032 10-23-10~26
1.5¢ 2/2 129/224  6448-6685 10-20-1024
1.5¢ 4/16 200/1443  6277-6865 10-23-10-28
1.4¢ 4/0 347/0  7042-7476 10~22-10~%°
1.3¢ 1/0 51/0  7671-7791 10-2°-10-24
1.24 2/0 132/0  8407-8612 10-26-10-23
1.0¢ 3/1 193/108  9516-9890 10-2°-10~22

3 A 12C13CH, data are not mentioned.
> New data from Refs. [246,249)].

¢ New data from Refs. [247,248].

4 New data from Ref. [248].

¢ New data from Ref. [246].

cm~! (middle axis); the AP polyad series values (bottom
third axis; see [247] and Refs. therein for definition)
associated with each of the spectral regions mean values
identified along the above two axes.

These data improve and summarize the current
experimental spectroscopic knowledge on acetylene. Sev-
eral of the spectral regions involved are of atmospheric,
planetary, astrophysical, or meteorological interest, e.g., at
3, 2.2, 1.5, and 1 pm. The study of the region at 7.7 um,
very useful for several applications, is in progress [253]. In
this spectral region, intensity measurements were under-
taken because the knowledge of C,H, line intensities is
important for several applications, especially for astro-
physical interest. For example, the acetylene molecule has
been observed in the circumstellar envelopes of carbon-
rich stars. Using IRS on board the SST telescope, Matsuura
et al. [254] detected acetylene bands at 7 and 14 pm in
carbon-rich asymptotic giant branch stars in the Large
Magellanic Cloud. Around 7 pm, GEISA-09 only contains
line positions and intensities that Vander Auwera calcu-
lated from his absolute intensity measurements in the
(v4+Vvs)% band [255], for the rotational quantum number
J up to 35. But intensities measured in [255] for some
lines of the (v4+Vs)?> band are not reported in the
databases. The temperature of interest for applications
being around 500 K [254], the knowledge of intensities in
the remaining hot bands is also important. In Ref. [254],
Matsuura et al. could not reproduce the shapes that they
observed in their IRS-SST spectra around 7 pm because of
the lack of data available in the databases.

The GEISA-09 C,H, line list involves 11,340 entries and
118 vibrational transitions against 3115 entries and 29
vibrational transitions in GEISA-03.

2.2.18. CoH,4 (molecule 25)

Ethylene has been identified in the atmospheres of
some of the giant planets and Titan. The spectroscopic
information available for this molecule in GEISA-03 dates
back to the 1997 edition [7]. It includes the 10 and 3.3 pm
spectral regions of the main isotopologue and the 3.3 pm
region of '2C'3CH4 [7]. The 10 um region of !?C,H,4
involves the vy, V7, V4 and v;, bands observed near
826, 949, 1027 and 1442 cm™!, respectively. The first

1.1
pm
9000
cm™’
AP

I Spectroscopic data present in GEISA-03
I Spectroscopic data recently measured and added in GEISA-09

I \Work in progress for line intensities measurements

Fig. 8. Improvement of data available in GEISA-09 for the '2C,H, isotopologue of acetylene. P is the pseudo-quantum number defined for acetylene as:
P=5v;+3V,+5V3+V4+Vs, Where vy, vy, V3, Vg4, and vs are the quantum numbers associated with the normal modes of vibration of the molecule in the
ground electronic state. Note that the thickness of each box does not represent the frequency span.
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three bands are already in GEISA [8], while the v;5 band is
absent. Recently, Rotger et al. [256] carried out an
experimental and theoretical study of line positions and
intensities in the v;, band of '2C,H,4. 1240 line positions
and 871 intensities, measured in a set of Fourier trans-
form spectra recorded at ULB, were fitted using the
tensorial formalism developed at ICB with global root
mean square deviations of 1.6 x 10" cm™! and 1.88%,
respectively [256]. Using the refined model thus obtained,
the positions, intensities and lower state energies of 5400
lines in the v, band were calculated. These lines corre-
spond to transitions from levels with J <40, and lower
and upper state rotational energies up to 1380 and
1510 cm™!, respectively. This initial list of line parameters
was complemented with the self- and air-broadening
parameters, and the temperature dependence of the air-
broadening parameter based on literature [257-260] (see
[256] for details). This vq> band line list (5400 entries),
whose content is summarized in Table 9, has been added
to the present 2009 edition of GEISA.

2.2.19. HCN (molecule 27)

In planetary atmospheres, HCN is an important nitrile, of
astrobiological interest in many cases and whose abundance
and its variations has been thoroughly studied (see for
example Coustenis et al. [226] in the case of Titan). A major
improvement has been accomplished on the entire list of
lines of HCN. The entire GEISA-03 content (2550 entries in
the spectral range 2.870484-18,407.972700 cm~!) has been
replaced, in GEISA-09, with new data originating from two
different sources, i.e., from Harris [261] and from Maki
[262]. The new line list comprises 82,042 entries in the
spectral range 0.00636-17,581.009367 cm~ .

Harris’s [261] data are related to the main isotopolo-
gue H'?C'“N. Among a total of 108,402 entries 28,624
have been implemented in a supplemental line list
because they did not have upper vibrational state identi-
fications. The HCN archive has been obtained from a
combination of experimental and theoretical data. The
theoretical data were taken exclusively from the line list
of Harris et al. [263]. Experimental data were used in
preference to the ab initio data where they were available.
The line list covers the spectral region 0.011561-
17,943 cm~'. Hot bands, with a lower vibrational state
of 3 quanta of bend, are given for many of the lower

Table 9

energy transitions. Data are included for transitions up to
the (5001) stretching combination bands. The HCN line
list was constructed in the following stages:

e Construction of a list of laboratory determined energy
levels: The available laboratory line measurements
[264-270]; for line positions were gathered. From these
line position data, a list of HCN energy levels was
determined. This was done by using a technique that
deviates only slightly from that of Harris et al. [271];
the rotational constants are used to compute energy
levels up to an angular momentum quantum number
of 60.

e Construction of a list of laboratory determined line
positions: Using the laboratory determined energy
levels it is straight forward to compute a list of line
frequencies for dipole allowed transitions. The well
known selection rules for dipole transitions require a
change in symmetry and allow a change in angular
momentum of 0, +1. When applied to HCN the
allowed transitions form two groups. The first has a
change in parity of the vibrational angular momentum
with no change in total angular momentum. The
second group has no change in the parity of the
vibrational angular momentum, but a change of plus
or minus one in total angular momentum. For all the
dipole allowed transitions between laboratory deter-
mined energy levels, line positions were computed
by subtracting the lower state energy from upper state
energy.

e Construction of a list of laboratory determined line
intensities: A list of line intensities were computed from
laboratory data [272,273,268-270]. These data are
usually given in the form of band strengths or dipole
moments that are often supplemented with Herman-
Wallis factors. From this data, the line intensities of
individual lines were computed by using the relevant
Holn-London factor and the equation given by Maki
et al. [272].

e Construction of laboratory determined line list: Experi-
mentally measured line intensities were inserted into
the list of laboratory determined energy levels. In this
way, a HCN line list is created that is based upon
laboratory measurements.

e Augmentation of the laboratory determined line list with
ab initio line intensities: Many of the intensities for the

Summary of the content of the line list for the v, band of '2C,H,4. The intensities are given at 296 K for an isotopologue abundance of 0.9773.

Value Value
F-min (cm™1) 1380.0239 Int-min (cm~'/(molecule cm~2)) 2.764 x 10737
F-max (cm™1) 1509.9819 Int-max (cm~'/(molecule cm~2)) 6.948 x 102!
J” max 40 Int-sum (cm~!/(molecule cm~2)) 1.549 x 10~ '8
K max 20 HWHM,;; min (cm~!atm™~1) 0.0813
# lines 5400 HWHM,;; max (cm~ ' atm~1) 0.0989
n 0.82 HWHM;eir (cm ™" atm ™) 0.125

‘min’ and ‘max’ represent the minimum and maximum values of the corresponding quantity, respectively; ‘F is the wavenumber; J” and K,” are rotational
quantum numbers; ‘# lines’ is the total number of lines; ‘n’ is the temperature dependence exponent of the air-broadening parameter; ‘Int’ is the line
intensity; ‘Int-sum’ is the sum of all the line intensities; ‘HWHM,;,’ and ‘HWHMf are, respectively, the air- and self-broadening parameters.
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dipole allowed bands have not been measured. The
resulting gap in the laboratory determined line list
may only be filled by ab initio data.

Many of the transitions in the ab initio line list of Harris
et al. [263] have been assigned an approximate vibra-
tional quantum number. It has been therefore possible
to insert the line strengths from the Harris et al. [263]
line list into the GEISA-09 line lists, creating a more
complete list of lines.

e Augmentation with ab initio data and truncation: The
upper and lower energy levels for many strong room
temperature lines have not been determined. In order to
account for these strong lines, the GEISA-09 line lists for
HCN were augmented with purely ab initio line position
and intensity data from Harris et al. [263]. Finally, to
reduce the size of the final line list, a minimum line
intensity of 1073% cm~'/(molecule cm~2) was chosen.
Lines with intensities below this level were removed
from the final line lists.

Maki’s data [262] include the isotopologues: H'2C!“N,
H'2C™>N, H'3C!”N and a new isotopologue species
for GEISA-09, i.e., D'>C'N and comprise 5 files in the
spectral ranges: 0.014975-175.672283 cm~! (408
entries); 533.819433-895.585448 cm~! (981 entries);
1241.392310-1591.111005 cm ! (709 entries);
2428.365681-3609.137515cm ™! (1710 entries) and
452.016228-2725.191923 cm™!) (452 entries) and
452.016228-2725.191923 cm~! (452 entries) for DCN.
Note that DCN is considered as an isotopologue of HCN
and not as an independent molecule, because it has the
same symmetry as HCN (see Sections 1 and 2).

The origin of the spectroscopic parameters is as the
following:

e The values of line positions and their uncertainties
were based on a large body of data that included many
very accurate microwave and mm-wave measure-
ments [264-281] and also several infrared measure-
ments [265,266,282,283]. For each isotopologue all the
wavenumber data were included in a least-squares
analysis that made it possible to calculate all the
transition wavenumbers, and their uncertainties, given
in the GEISA-09 line list. These uncertainties are twice
the standard deviation.

e The intensities of the far-infrared transitions are
assumed to be well represented by the dipole moment
measured for each vibrational state. The best dipole
moment measurements are those given by Tomasevich
[284] and by DeLeon and Muenter [285] and Ebenstein
and Muenter [286]. The dipole moment is very large
and any Coriolis-type mixing of intensity with other
vibrational states would probably have a very small
effect because the vibrational transition moments are
small compared to the dipole moment. For that reason
it was assumed that the intensities of the far-infrared
transitions could be calculated by using the same dipole
moment for all values of J. The intensities for the v,
transitions for H'?C'“N, H'?C'°N, and H'3C'“N were
taken from the work of Devi et al. [287]. The same
intensity constants were used for the hot bands that

accompany Vv,. For transitions that involve v, > 1, the
effects of I-type resonance were included as described
by Maki et al. [272]. The intensities of the 2v, band and
hot band are based on the measurements of Devi et al.
[288] and Maki et al. [272,289]. For these transitions the
effects of I-type resonance were taken into account
[272,289]. The intensities of the v; transition for HCN,
H'3CN, and HC'>N were taken from the work of Devi
et al. [290]. The hot bands were assumed to require the
same intensity constants, as was verified by the agree-
ment with the measurements of Devi et al. [290]. For
the v;—v, transitions near 2600 cm~! the intensity
constants were taken from the measurements of Maki
et al. [272]. The intensities of the v,+Vv3 band near
2800 cm ™~ ! came from the work of Maki et al. [289] and
the intensities of the 2v,+vs transitions near
3520cm~! were taken from that same work. In all
cases the GEISA-09 archived line intensities of HCN
could be used to calculate the intensities for other
conditions such as temperature or isotopic composition.

e Except for the regions 2428-2720cm~' and 3089-
3450 cm !, the air-broadened half-width and air-
induced pressure shift coefficients of HCN, and their
temperature dependences, were based on the data
given by Devi et al. [287] for the v, band of HCN.
Except for some transitions that did not include states
with v; > 0, the line parameters for the regions 2428-
2720 cm~! and 3089-3450 cm~! were based on the
measurements by Rinsland et al. [291]. Their earlier
work on the 2v, and v; bands of HCN indicated that,
aside from the wavenumbers of the transitions and the
intensities, there is very little vibrational dependence
of the Lorentz pressure-broadened half-width coeffi-
cients for HCN. The only parameters that seemed to be
dependent on the vibrational state were the air-
induced shift coefficients and their temperature
dependences. In GEISA-09 those parameters were
assumed to have the same values given by Rinsland
et al. [291] for all transitions with v;=1 in the upper
state. The air-induced pressure shift parameters for all
transitions with v; =0 were assumed to be the same as
those measured by Devi et al. [287] for v,. Devi et al.
[287,288] believed that the parameters were the same,
within experimental error, for both v, and for 2v, and
probably would be the same for the ground state as
well. Since GEISA-09 includes transitions involving
much higher rotational states, to J=60, than those
measured by Malathy Devi et al. [287,288,290] and
Rinsland et al. [291] (J < 34), the trends in the various
line shape parameters were extrapolated beyond rea-
sonable bounds and the uncertainties in the para-
meters were increased to attempt to encompass
reasonable values. All of the broadening and shift
parameters for H'3C'“N and H'2C'>N were assumed
to be the same as for the most common isotopologue,
H'2C'N. Within experimental error, this assumption
was based on a number of measurements made on the
2v, band of H!?C!“N [288].

The air induced pressure shifts for DCN were given
values that were 70% of those for HCN in agreement with
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a private communication from Smith [292]. That estimate
was not based on any real measurements of DCN but
rather was based on the trend shown by HCI and DCI. The
other parameters for DCN were the same as for HCN, but
again that was not based on any measurements.

In a supplementary file (Table S1), the uncertainties in
the various parameters are summarized and given along
with many other parameters used for processing Maki’s
new HCN data.

The HCN GEISA-09 line list has been processed as
follows: starting from Harris’s line list [261], Maki’s data
[262] have been included, replacing those of Harris’s with
the same quantum number identifications.

The HCN GEISA-09 line list includes 82,042 entries
(775 transitions) against 2550 entries (41 transitions) in
GEISA-03.

2.2.20. C3Hg (molecule 28)

The intensities of the v, band transitions were cor-
rected in GEISA-03 line list which includes only the cold
band. A PNNL spectrum at 298 K and 0.11 cm~! resolution
yields an intensity of 4.27 x 10~ '° cm~!/(molecule cm~2)
for the whole band, including cold and hot bands [293], a
value (4.33 x 10~ cm~'/(molecule cm~2)) that agrees
with the earlier measurement of Giver et al. [294] at
lower resolution. The vibrational partition function at
296 K is 2.71, so that the intensity of the fundamental
cold band should be about 4.27/2.71=1.58 x 10~ cm ™/
(molecule cm~2). In the GEISA-03 line list, an intensity of
3.76 x 10~ '® cm~!/(molecule cm~2) had been set for the
cold band, based on some low-resolution spectra that
include the hot bands, which is incorrect. The GEISA-03
intensities have thus been multiplied by a factor of 1.58/
3.76=0.420 in the GEISA-09 edition (see Nixon et al. [295]).
This scaling factor yields an intensity of 1.58 x 10~ ° cm ™!/
(molecule cm~2) at 296 K for the fundamental band, as
estimated from the integrated intensity of the whole region
in the PNNL spectrum, 4.27 x 10~ '® cm~!/(molecule cm~2)
including hot bands, divided by the vibrational partition
function at 296 K (2.71).

For all bands, a Lorentz half-width coefficient of
0.12cm~ ' atm~! at 296 K and a temperature dependence
exponent of 0.50 was assumed for all transitions, follow-
ing Ny-broadening measurements by Nadler and Jennings
[296] and Hillman et al. [297]. Propane has been identi-
fied in the atmospheres of some of the giant planets and
of Titan. New propane data from Flaud et al. [298]
including hot bands will be archived in the next version
of the GEISA database. The total number of entries (8983)
has not been altered since GEISA-03.

2.2.21. GN, (molecule 29)

A mistake was found in the relative intensities of the
hot sub-bands of the vs band listed in GEISA-03 (and in
previous versions). More precisely, the intensities of the
(02)?—(02)!, (03)'«<(02)*> and (03)>«<(02)? sub-bands
were two times too big; they have been corrected accord-
ingly in GEISA-09. Following this correction, the total
band intensity has been updated by multiplying all line
intensities by 0.95, a factor that yields the best agreement
with Grecu et al. [299] absolute intensity measurements

in the (01)! —(00)° cold band, as listed in Table 3 (data for
8 mbar of N, pressure) of Ref. [299]. Note that this
determination slightly disagrees with the older measure-
ment of the integrated band intensity by Kim and King
[300], which would yield intensities 15% larger. For the
Lorentz broadening parameter (HWHM), we used the
expression “0.12-0.00035m” at 296 K, derived from a fit
of the data points in Fig. 5 of Grecu et al. [301]. We
arbitrarily assumed a temperature dependence exponent
of 0.75 for all transitions listed in GEISA-09. This updated
line list will be used for planetary studies in the case of
Titan. The total number of entries (2577) has not been
altered since GEISA-03.

2.2.22. C4H, (molecule 30)

The diacetylene line list (issued 1982, 1986 [3,4]) still
included in GEISA-03 (1405 entries; 5 bands) has been
replaced in GEISA-09 by a new line list (119,480 entries;
1509 bands) based on experimental and theoretical stu-
dies by Jolly et al. [302]. The lines included belong to the
vg and vg bands in the range between 581-730 cm ' and
191-257 cm ™!, respectively. The number of lines has
been increased from 1405 to 119,480. Due to low energy
vibrational modes, the vibrational partition function of
C4H5 is large (Q,=61 at 300 K). This means that only 28 %
of the molecules are in the ground state at room tem-
perature. In the previous GEISA-03 line list, hot band
transitions from three different excited levels were pre-
sent in the vg band complex but none in the strong vg
band complex. The new line list includes hot band
transitions with lower vibrational levels up to about
1300 cm~! for the vg band complex and up to about
900 cm ! for the weaker vo band. This was necessary to
allow for the inclusion of the contributions of all the hot
band transitions with a non negligible intensity at room
temperature. The minimum intensity of the lines is
3x 10724 cm~'/(molecule cm~2) at 296 K. It was also
necessary to extend the quantum identification, in parti-
cular the vibrational quantum numbers of both upper and
lower levels. All v values for the nine vibration modes of
C4H> have been included in the assignment together with
the four ¢ values corresponding to all bending modes (v1,
Vo, V3, V4, Vs, Vg, V7, Vg, Vo, L6, {7, €3, £9). The new line list is
based on a global analysis study as described by Fayt et al.
[303]. High resolution data from Arié and Johns [304]
were fitted together with other experimental data in the
infrared [305,306] and in the microwave domain [307].
Since no new intensity measurements were available,
band intensity measurements by Koops et al. [308] were
chosen to infer the absolute intensities of the lines.

The improvement of the data is very important in
particular for the study of planetary atmospheres. Diace-
tylene was first detected in Titan’s atmosphere by the IRIS
[309] spectrograph on board the Voyager spacecraft [310]
and is now under close scrutiny by the CIRS spectrometer
on board Cassini [226,311,312]. Using the new line list
Jolly et al. [302] were able to obtain a new fit of the
diacetylene contribution in Titan’s atmosphere recorded
by Cassini-CIRS resulting in very precise abundance
determination and the first detection of the 3C isotopo-
logues of diacetylene in Titan’s atmosphere. Recently
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detection of the main isotopologue occurred in the atmo-
spheres of both Uranus and Neptune using the Spitzer
space telescope [313,314]. Outside the solar system,
detection of diacetylene was achieved in the post-AGB
object CRL2688 and in the proto-planetary nebulae
CRL618 [315]. All detections so far where obtained thanks
to the strong vg bending mode centered at 628 cm ', but
the weaker vo bending mode at 220cm~' was also
detected by IRIS and CIRS in Titan’s atmosphere.

2.2.23. HC3N (molecule 31)

A line list for cyanoacetylene has been included in
GEISA since its first editions [3,4] thanks to Goldman’s
data [316]. It was already modified in 1990 following a
new analysis by Arié et al. [317]. In GEISA-09 a completely
new line list, based on experimental and theoretical
studies by Jolly et al. [318], replaces the previous version.
Lines included belong to the vs and vg band in the range
between 463 and 760 cm~!. The number of entries has
increased from 2027 (20 bands) in the 1990 version to
179,347 (3302 bands) in GEISA-09. This consider-
able increase was necessary to take into account all
hot band transitions with a minimum intensity of
10724 cm~'/(molecule cm~2) at 296 K. Transitions with
lower vibrational levels up to about 1500 cm~! had to be
included to take into account all the intensity of the
bands. Only few lines belonging to hot band transitions
where included [318] in the previous line list. To obtain
this new line list, a global analysis was performed fitting
simultaneously high resolution data from Arié et al. [317]
together with all available experimental data including
microwave and infrared measurements. As a result, posi-
tions and relative intensities of lines belonging to 123
excited sub-states could be obtained. As for C4H,, the
assignment code needed to be modified to take into
account levels with high vibrational quanta numbers (v, £).
HC3N possess four stretching and three bending modes.
A complete vibrational assignment includes all seven v
values and three ¢ values (v1, V2, V3, V4, Vs, Ve, V7, €5, €6, £7).
The absolute intensities of the lines have were derived
from a new measurement of the integrated band inten-
sities of vs and vg at 0.5 cm~! resolution as described in
Jolly et al. [318].

Cyanoacetylene is a molecule of great interest for
planetary atmospheres and in particular for Titan’s atmo-
sphere where it has been detected by IRIS [309] during
the Voyager mission [310]. The presence of HC3N was
confirmed by the ISO space telescope [311] and has been
observed in details since 2004 by the CIRS spectrometer
on board the Cassini spacecraft. The quality of the new
observations by CIRS improves greatly in terms of spectral
and spatial resolution on the previous observations.
Recently, Jennings et al. [319] used the new line list
proposed by Jolly et al. [318] to obtain a good fit of the
HC3N feature at 663 cm~! in Titan’s spectrum. The con-
tribution of hot bands where clearly observed as a large
shoulder on the high energy side of the main feature. The
quality of the fit enabled small contributions due to 3C
isotopologues of HC3N to be observed, for the first time in
the solar system. The contribution of hot bands a cold
environment such as Titan’ atmosphere is not surprising

given that the partition function equals to 1.69 at 200 K,
which means that about 40 % of the molecules are still in
an excited state.

2.2.24. N, (molecule 33)

The whole of the line parameters of N, has been
replaced by a new line list provided by Goldman [320].
Improvements to the line parameters mainly include
intensities and half-widths. The new intensities are
obtained by the use of two works: the work by Goldman
et al. [321], where a semi-empirical Herman-Wallis for-
mulation of the vibration-rotation effects on the inten-
sities associated with a final scaling based on observed
spectra, and the work by Li and Le Roy [322] based on ab
initio methods. Values derived by both, Goldman et al.
[321] and Li and Le Roy, methods are very similar.
However, the ab initio matrix elements of Ref. [322] have
been adopted for the GEISA-09 line list, because it can be
expected that the Herman-Wallis formulation of Gold-
man et al. yields less accurate values with increasing J.
Presently, the GEISA-09 N, line list is restricted to only the
(1-0) N, band. It should be noted that Li and Le Roy
method makes it possible to derive additional line para-
meters for other bands that may be of atmospheric impor-
tance. The absolute accuracy of the Li and Le Roy intensities
is estimated to be about 1% by the authors; these new
values are still being validated. As described in Ref. [321],
the new half-widths are based on available experimental
and theoretical studies. As stated in Ref. [321], further
extensions are expected in the near future. The total number
of entries (120) has not been altered since GEISA-03.

2.2.25. CHsCl (molecule 34)

The GEISA-03 line list for CH5Cl, which was based on
Ref. [323], has been revised using data from Ref. [324]. In
particular, previously unassigned vibrational transitions
have been identified as belong to 2v; and the self-
broadened half-widths have also been revised for both
isotopologues. The total number of entries (18,344) has
not been altered since GEISA-03.

2.2.26. H,0, (molecule 35)

The H,0, (hydrogen peroxide) data previously
archived in GEISA-03 (100,781 entries; 2 bands), for the
ve band in the 7.9-um region, have been completely
replaced, leading to improved line positions and intensi-
ties in GEISA-09 (126,983 entries; 130 bands). Indeed, this
new list is more complete as it includes several hot
torsional-vibration sub-bands of the vg band (up to the
n=2 torsional quantum number), instead of only the two
main torsional components of the vg band (in the n=0,
=1 and n=0, 7=3 torsional quantum numbers). In
addition the new line positions are more accurate since
the vibration-torsion-rotation coupling the energy levels
from the 6! state with those from the 2!, 3! and ground
vibrational states were accounted for. The line intensities
are also more accurate as these parameters are based on
new line intensity measurements and on a sophisticated
theoretical treatment which account for the torsional
effects. The sources of the new data are Perrin et al.
[325] and Klee et al. [326].
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2.2.27. H,S (molecule 36)

No new line list has been implemented in GEISA-09 for
hydrogen sulfide, but updates occurred for air- and self-
broadened pressure half-widths. Where available, mea-
sured values have been adopted - those from Sumpf et al.
[327], Kissel et al. [328,329] and Waschull et al. [330], for
air-broadened half-widths and those from Refs. [327,330]
and from Sumpf [331] for self-broadened half-widths.
Otherwise, default values of 0.074 and 0.1580 have been
assigned to air- and self-broadened half-widths, respec-
tively. These values have been obtained as averages of the
ones previous quoted in the above reference. The total
number of entries (20,788) has not been altered since
GEISA-03.

2.2.28. HCOOH (molecule 37)

GEISA-09 contains a complete replacement and
enhancement of the spectroscopic information provided
for formic acid (62,684 entries; 8 bands). Indeed, until
GEISA-03, only parameters for 3388 lines of the vg band of
trans-H'2C'®0"®0H near 9 um were available. They origi-
nated from the work of Goldman and Gillis [332]. The sum
of the line intensities was equal to 1.757 x 107'7 cm?/
(molecule cm~') at 296 K, determined using a Fourier
transform laboratory spectrum recorded at the University
of Denver.

GEISA-09 provides spectroscopic information for trans-
H'2C'®0'®0H in three spectral regions: the pure rotation
spectrum in the far infrared, the vg and vg bands near
9 um, and the v; band around 5.6 pm.

Far-infrared Fourier transform spectra of the pure
rotation spectrum of formic acid were recorded in the
range from 20 to 130cm™! and analyzed by Vander
Auwera [333]. To provide an accurate set of parameters
describing the rotational structure of the ground state of
trans-H'2C'%0'®0H, 592 far-infrared line positions were
fitted together with 372 microwave lines [334-336]. The
resulting constants and known dipole moment [337] were
then used to calculate the positions, intensities and lower
state energies of 6808 a- and b-type pure rotation lines
observed between 10 and 100 cm !, originating from J/K,
levels ranging from 0/0 to 70/17, corresponding to
AK,=0, +1 and AK.= + 1, + 3, and being stronger than
4.0 x 10726 cm~!/(molecule cm~2) at 296 K. The line posi-
tions have been substantiated by a study of Winnewisser
et al. [338]. Note that the intensities listed in GEISA-09 are
a factor 4 larger than those listed in Table II of [333],
because of the oversight of the nuclear spin degeneracy of
the hydrogen in the latter. To complement these data, the
self- and air-broadening parameters, and temperature
dependence exponent of the air-broadening parameter
of all the lines were set to the same values as applied to
the vg and vg bands (see here below).

The 9 um spectral region was updated according to the
recent work by Vander Auwera et al. [339]. They reported
absolute line intensities measurements for the vg and vg
bands using Fourier transform spectroscopy, taking the
existing dimer (HCOOH), into account in the analysis.
They showed that the intensities reported by Goldman
and Gillis [332], and therefore in GEISA-03, were a factor
of about 2 lower than the average of the other existing

laboratory measurements, and than theoretical calcula-
tions. Relying on results of that work, Perrin and Vander
Auwera [340] generated a new set of 49,625 line posi-
tions, intensities and lower state energies covering the
range from 940.20 to 1244.41 cm~'. To complete these
data, the self- and air-broadening parameters, and the
temperature dependence exponent of the air-broadening
parameter of all the lines were set to 0.32cm~!atm™!
[339], 0.101 cm~'atm~! [341] at 296K, and n=0.75,
respectively. With a sum of the line intensities equal to
3.51 x 10~ 7 cm™!/(molecule cm~2) at 296 K and a three-
fold increase of the wavenumber coverage, this new list
was shown to provide a significantly improved modeling
of the vg spectral region of formic acid [340].

Using high-resolution Fourier transform spectra of
trans-HCOOH recorded at 5.6 pm, Perrin et al. [342]
carried out an extensive analysis of the strong v; funda-
mental band at 1776.83 cm™!, starting from results of a
previous analysis [337]. As pointed out in the literature,
the v3 band is significantly perturbed by resonances with
numerous dark bands. Perrin et al. [342] were able to
assign series belonging to the vs+Vy, Vs+Vg, Vg+V; and
Vg+ Vg dark bands, located at 1843.48, 1792.63, 1737.96
and 1726.40 cm ™!, respectively. The model used to cal-
culate energy levels accounted partly for the observed
resonances, and reproduced most of the observed line
positions, within experimental uncertainties. Absolute
line intensities were also determined in that work with
an accuracy estimated to 15% [342]. From these results,
the first database for the 5.6 pm region of the formic acid
spectrum was built. It includes 6251 lines belonging to
the vs, Vs+V7, V54 Vg, Vg+V7 and Vg+ Vg bands of trans-
H'2C'®0'®0H with J <66, K, <18, and lower and upper
states energies up to 2700 and 3600 cm ™!, respectively.
Table 6 of Ref. [342] details the contents of the line list.

2.2.29. SFg (molecule 39)

Sulfur hexafluoride is a strong greenhouse gas whose
concentration in the atmosphere should be monitored
and limited, according to the Kyoto protocol [343]. The
spectrum of SFg is, however, poorly characterized, (at
least for atmospheric purposes). The main reason is that
this molecule is heavy, which has two important con-
sequences for its spectrum: (i) there are low-lying bend-
ing vibrational modes producing a lot of hot bands and (ii)
the spectrum is very dense so that even at high resolution
there is virtually no isolated line, each line being a cluster
of many overlapping transitions. The second point renders
the determination of line intensities and, thus, of dipole
moment derivatives, very difficult.

Although at lot of work remains to be done on this
molecule, many vibrational bands have been investigated
in the past years at ICB [344]. A new line list for the v3
stretching and the v4 bending fundamental regions has
been produced. The only partial knowledge of the inactive
ve lowest fundamental still prevents a full hot band
analysis, especially for vs+ve—Vvs. However, the lower
spectral density in the v,4 region has allowed the detailed
investigation of v4+vg—Vvg [345]. In the case of v3
itself, which is the strongest absorption band, a very
detailed line position analysis exists, based on various
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high-precision experimental data (FTIR but also saturated
absorption and IR-IR double resonance). In this case, the
resulting accuracy for line positions is estimated to be
better than 0.001 cm~! up to J=100. For the v, funda-
mental, the accuracy for line positions is around
0.001 cm ™! up to J=100 and for the v4+ Vvg— Vg hot band
it is ca. 0.002 cm~! up to J=65. The J values given above
correspond to the highest values for the assigned lines.
The accuracy may decrease quickly when extrapolating to
higher J values, although this is difficult to estimate in a
quantitative manner.

As mentioned above, the question of line intensities in
the case of SFg is a difficult problem. To generate the
present list, we used the best-known dipole moment
derivative values found in the literature [346,347]. We
checked with the previous list for v3 from GEISA-03 that
we obtain exactly the same intensities in this case.
However, we globally estimate the line intensity accuracy
to be no better than 20 %, in the absence of precise
intensity measurements on isolated lines.

Analyses and calculations have been performed with
the HTDS software [348]. The whole original ICB line list
contains 30,106,484 entries. It has been reduced by apply-
ing intensity cutoff in suitable for SFs impact signatures
in most atmospheric radiative transfer calculation.
The applied intensity cutoff, in cm~'/(molecule cm~?2) at
296 K, had the value 10~2* for band v; (46,031 lines
retained among 2,826,164 in the original list) and 1023
for bands v4 (10,986 lines retained among 2,657,543) and
V4+ Ve — Vg (35,381 lines retained among 24,622,777). As a
consequence, the new line list for SFg in GEISA-09 (spectral
range 580 to 996 cm~ ') contains a total number of entries
reduced to 92,398 lines (6 bands). For the whole line list, a
default value of 0.50 cm~'atm~! has been given to the
air-broadening pressure half-widths and of 0.65 to the
associated temperature dependence coefficient n.

2.2.30. C3H,4 (molecule 40)

Line parameters for two CH3C,H (CsHy) bands (the vqg
at 331 cm~! and the vg at 639 cm™!) were provided by
Graner (private communication), based on constants of
Pekkala et al. [349] for the frequency calculations and
Blanquet et al. [350] for intensities of individual lines. For
the v;¢ band, the study of a first spectrum at a resolution
of 0.0056 cm ™! by Horneman et al. [351] was followed by
the analysis of a 0.002cm™! resolution spectrum by
Graner and Wagner [352]. The description of the vqg
was accomplished and, in addition, two main hot bands
were also provided [352,349]. In the 16-pum region, the vg
fundamental band was recorded at 0.003 cm ' resolution
and a full analysis was completed by Pekkala et al. [349]
and Pekkala [353].

The extraction of intensities from these high resolution
spectra was not an easy task. As a consequence, global
intensities from the literature were used to predict indivi-
dual line intensities, as explained by Horneman et al. [351].

This dataset was first applied to Titan in Coustenis
et al. [354]; see Fig. 11a therein. Both propyne bands were
detected on Titan and the more accurate spectroscopic
parameters are presented GEISA-09 which is updated for
the first time since the 1992 edition. These parameters

allow for a better determination of the molecule abun-
dance since it can now be separated from the nearby C4H,
band [312]. The C3H4 GEISA-09 line list includes 19,001
entries (22 transitions) against 3390 entries (1 transition)
in GEISA-03.

The CDMS catalog contains entries for v=0, vig=1, V1o
and vg based on [355,356]. A future update of GEISA shall
consider these entries or may even be based on [357].

2.2.31. CIONO, (molecule 42)

The rotational transitions from 0 to 45 cm~! for the
ground and vg=1 vibrational states have been included in
the GEISA database for the first time.

The predicted transitions for each isotopologue are based
on the spectroscopic constants derived from the analyses of
millimeter and submillimeter wave rotational spectra in
Refs. [358-360]. All predictions were calculated using the
SPCAT program package ([192]; http://spec.jpl.nasa.gov/ftp/
pub/calpgm/spinv.pdf) for a temperature of 296 K.

From Ref. [361], isotopic abundances of 0.74957 and
0.23969 and rotational partition functions of 4,788,362
and 4,910,202 were used in the predictions for the 35 and
37 chlorine isotopologues, respectively. A vibrational
partition function of 4.02 [362] was used that includes
the vg vibrational mode that has a band origin near
121 cm™'. The rotational spectra from the ground and
vo=1 states account for about 39% of the thermally
populated states. Future updates will include the addition
of pure rotational spectra from higher lying vibrational
states and the infrared simulation of the vg fundamental
band and the first two associated hot bands for each
isotopologue in the 22 pm region. Due to the low lying vg
mode, there will be significant hot band intensity con-
tributions to each infrared band.

The CIONO, GEISA-09 line list includes 356,899 entries
(7 bands) against 32,199 entries (3 bands) in GEISA-03.

2.2.32. CHs3Br (molecule 43)

CHsBr contributes significantly to ozone depletion
since it is dissociated by UV radiation producing Br
radicals who catalyze the destruction of ozone [363]. This
molecule is the major contributor to bromine in the
stratosphere and the main organobromide in the lower
atmosphere. The bromine atoms are 50 to 60 times more
destructive of ozone than the chlorine atoms coming from
the chlorofluorocarbons compounds (CFCs) [364].

Methyl bromide spectroscopic line parameters are
present for the first time in GEISA-09 (36,911 entries; 6
bands). Two line lists of both isotopologues have been
generated: one around 10 pum for the vg band [365], and
the other around 7 pm for the interacting v, and vs bands
[365-367]. In natural abundances, methyl bromide is
composed of 50.54% of CH3 Br and 49.46% of CH3 Br.
Note that the broadening coefficients and its temperature
dependence obtained in Refs. [365,366] around 10 pm
have been used for the 7um spectral region. Air-broad-
ening coefficients have been deduced from nitrogen-
broadening coefficients using a constant scaling as for
the H,0 molecule, for which air-broadening coefficients
could be obtained by multiplying N,-broadening coeffi-
cients by the value 0.9 as suggested in Refs. [369-371].
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Since CHs3Br is chemically and structurally related to
CHsCl, we proposed to use the ratio HWHM,;/
HWHMy,=0.96 in order to convert the N,-broadening
to the air-broadening. This value comes from the ratio
HWHMy,/HWHMg,=1.25 obtained by averaging mea-
surements of CH3Cl from Refs. [372,373]. Note that this
result is quite similar to what has been proposed for
ozone in Ref. [374]. This procedure is approximate since
HWHM\y,/HWHM, varies from line to line. However it is
expected to be accurate within a few percent which is
sufficient in view of the experimental uncertainties and
the accuracy of the calculations. Also, the air-width
temperature dependence has been added in both spectral
regions, using the same values as those obtained for the
N,-width temperature dependence (see Eq. (5) and text in
Ref. [366]). Accuracies and details of the line parameter
calculation can be found in Refs. [366,368]. In the absence
of experimental or theoretical results for air-pressure
shifts for CH3Br, the GEISA standard missing value of
—9.999999 cm~! atm ! has been used for all transitions.
Note also that line mixing effects have been observed and
modeled in the strong Q-branches between 220 and 300 K
[375,376]. Line mixing parameters (for direct calculation
or Rosenkranz profile [377]) are available upon request to
the authors.

2.2.33. CH3OH (molecule 44)

The importance of methanol microwave, millimeter
wave, sub-millimeter wave and terahertz spectroscopy to
space science and astrophysics can be traced back to
several decades ago when methanol was first discovered
in interstellar clouds and star forming regions [378]. The
rich variety of torsion-rotational methanol transitions
falling in the frequency bands accessible to most radio
and sub-millimeter wave telescopes and notably the new
Herschel (http://www.esa.int/SPECIALS/Herschel/SEMB
MOOYUFF_0.html), ALMA (http://www.eso.org/sci/facil
ities/alma/) and SOPHIA (http://www.sofia.usra.edu/)
observatories, leads to a dense and detailed interstellar
spectrum and demands an accurate knowledge of the
methanol energy levels so that the interstellar “methanol
weeds” can be removed. The infrared spectroscopy of
methanol has also acquired renewed importance in wide
areas of application in recent years, such as the recent
observations of the 10 pum feature in forest fire [379], the
influence of biogenic emissions on upper-tropospheric
methanol as revealed from space [380], observations in
the terrestrial atmosphere [381], the 3 pm features in
several comets and the icy mantles of interstellar dust
grains [382-385]. These applications require reliable
simulation of the absorption band profiles at any pre-
scribed conditions of temperature and density. Achieving
reliable calculations in turn requires detailed understand-
ing of the vibration-torsion-rotation structures of the
bands, in terms of both the line positions and intensities.

A methanol line list (19,897 entries; 16 bands) is
included for the first time in the GEISA database; it
consists of two regions, 0.019265-33.336958 cm~! and
911.608420-1407.205540 cm~ . The first region is based
on a global analysis of the first two torsional states of
v12=0, and 1 and J,,.x=20 [386] which led to a prediction

list to Jmax=26 at a frequency cutoff of 1 THz [387]. Line
strengths in that list were calculated using permanent
dipole moment values of 1;=2.999 x 10739 C m (0.899 D)
and up=-4.803x1073°Cm (—1.44D). The list was
originally designed at that time to assist the radio astron-
omy community. More recently, an expanded global
analysis with v;,=0, 1, 2 and J,.x=30 has been published
[388]. The second region was built on extensive Fourier
transform spectroscopic analyses of methanol spectra in
the 10 um region ([389] and references therein). Due to
strong vibration-torsion and rotational interactions, the
transitions observed in the 10 pm region arise not only
from the vg CO-stretch fundamental band, but also from
vg hot bands and nearby vibrations such as vs, v and v
entering in the region with different v,, torsional combi-
nations. Within the limits of the isolated vibration-
torsion-rotation band model, the predicted positions
and intensities unfortunately did not reproduce the spec-
trum within experimental uncertainties for vg and
vg+Vi2. In addition to strong and medium intensity
transitions of the vg and vg+vq> bands, there are many
additional transitions appearing with visible intensity in
the spectral window; these were identified as belonging
to the vg+2vi3—2Vqy, V;—ground, v7+Vi2— V12, Ve— V12,
Ve—2Vi2, Vg+Viz—Viz, Vs5—2Viy, 3V12—gr0und and
4vi,—ground bands. Many of these transitions are per-
turbation-induced, gaining intensity via anharmonic and
Coriolis interactions with the strong vg vibration in the
region. Thus, with an isolated-band approach, these
transitions cannot be modeled in either position or
intensity. Therefore, it has been chosen simply to include
empirical positions and intensities of these features
whenever available in our database.

Arriving at the ultimate 10 pum region database, several
steps were taken to ensure that the contents reflected the
best knowledge of the molecule at the present time (i.e.,
with observed positions and intensities substituted for
predictions whenever available). More specifically, (i) line
positions (for 95% of the transitions) were replaced with
observed values from the NRC FT spectra except for the
congested Q-branch region, in which Q transitions were
recomputed from the corresponding observed R- and
P-transitions using averaged upper-state term values;
(ii) intensities were replaced with measured intensity retrie-
vals from the highest density Kitt Peak spectrum (1.95 Torr,
10 cm). With the predicted database as the input, over
13,500 new intensities were retrieved between 970 and
1085 cm ™!, including a few lines not currently assigned.
Weak lines in the prediction that could not be discerned in
the new effort were added to the database with a “default
intensity” in order to maintain a complete record of known
assignment; the very low intensity value of 10726 cm™!/
(molecule cm~2) was chosen so that these unmeasured
transitions would not contribute extra absorption in the
radiative transfer calculations for most applications.

The lower state transition energy is referenced to
128.1069 cm~! for the K=0 a level, the temperature
dependence of width have been attributed the 0.75 default
value and the air pressure shift of the line transition has
the GEISA-09 standard missing value (i.e., —9.999999). The
vibrational index are: Ground, Vi3, 2Vi2, 3Vi2, 4Vi2, Vs,
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Vg+ V12, Vg+2V12, V7, V7+ V13, Vg, Ve+ V12, Vs for upper and
lower states and the torsional symmetry A, E; or E;; the
overall rotational angular momentum J involves compo-
nent K along the molecular a-axis. Resolved K-doublets of A
symmetry have an additional + to distinguish the A* or A~
component of the doublet.

2.2.34. NO* (molecule 45)

The data on the nitric oxide molecular ion NO* are
debuting in GEISA-09.

The line positions of the GEISA-09 NO™* line list are
issued of a paper by Lopez Puertas et al. [391] and
associated subsequent publications: using high resolution
(0.035 cm~! unapodized) spectra of the Earth’s atmo-
sphere, recorded by the MIPAS experiment, line positions
of rovibrational NO* transitions have been obtained with
an unprecedented accuracy. As a consequence, compari-
sons with the HITRAN 1996 line list [390] have shown that
the spectral line positions of the NO* (1-0) and of the
NO™* (2-1) rovibrational bands are shifted by about
0.15 cm ™! and approximately 0.05-0.1 cm !, respectively.

For J’ <40, the archived line positions have been
derived from a set of Hamiltonian constants for NO™*
obtained from a fit of the MIPAS data together with the
existing microwave and infrared data (see [391] for
details). Accurate frequencies for high-J values cannot be
predicted with the use of those constants; consequently,
for J” greater than 40, line positions have been derived
from the former HITRAN 1996 archive [390].

It has to be noted that the newly generated NO*
GEISA-09 line list by Flaud [391] (1206 entries; 6 bands,
in the spectral range 1634.831-2530.462 cm™!), is similar
with the HITRAN-08 one [13]; this includes, in particular,
the intensities, kept from Werner and Rosmus [390], and
the default value 0.06 cm~! chosen for the air-broadened
half-widths, as well.

It is clear that new high resolution spectra of the NO™*
species are needed in order to improve its spectral
parameters.

2.2.35. HNC (molecule 46)

Although HCN and HNC actually lie on a single poten-
tial energy surface, they are separated by a significant
barrier [392]. Within GEISA-09 they are treated as sepa-
rate species and HNC is a new molecular species for this
new edition of GEISA. HNC is the less stable isomer but is
known to be overabundant compared to HCN in the
interstellar medium (e.g., [393]). Furthermore the parti-
tion function of HNC increases much more rapidly with
temperature than that of HCN meaning that at tempera-
tures of about 2500 K, the equilibrium abundance of HNC
should be about 20% of HCN [394]. The spectrum of HNC
has been identified in carbon stars Harris et al. [395].

The GEISA-09 HNC line list was compiled by Harris
[261] for the main isotopologue H'*N'2C. Among an initial
total of 9117 entries, in the spectral range 0.216955-
12,594.316928 cm~ !, 3498 are included only in a supple-
mental line list because they did not have upper vibrational
states identification. Consequently, the final GEISA-09
archived HNC data comprises 5619 lines (84 bands) in the
spectral range 0.216955-4814.904168 cm .

As for HCN, the GEISA-09 HNC line list was constructed
from a combination of experimental and theoretical data.
The theoretical data are taken exclusively from the line
list of Harris et al. [263]. Experimental data are used in
preference to the ab initio data when they are available.
The GEISA-09 HNC line list is less extensive than that for
HCN; it is also less accurate since there is substantially
less laboratory data to base it on. The spectral region
covered for HNC is 0.217-12,594 cm ™~ . Hot bands with a
lower vibrational state of 2 quanta of bend, are given for
most of the transitions.

The GEISA-09 HNC line list was constructed in the
following stages:

e Construction of a list of laboratory determined energy
levels: The laboratory line frequency measurements of
Northrup et al. [396] were used to determine a set of
experimental HNC energy levels. This was done by
using a technique that deviates only slightly from that
of Harris et al. [271]; the rotational constants are used
to compute energy levels up to an angular momentum
quantum number of 60.

e Construction of a list of laboratory determined line
positions: Using the laboratory determined energy
levels it is straight forward to compute a list of line
positions for dipole moments allowed transitions. The
well known selection rules for dipole moments transi-
tions require a change in symmetry and allow a change
in angular momentum of 0, + 1. When applied to HNC
the allowed transitions form two groups. The first has
a change in parity of the vibrational angular momen-
tum with no change in total angular momentum. The
second group has no change in the parity of the
vibrational angular momentum, but a change of plus
or minus one in total angular momentum. For all the
dipole moments allowed transitions between labora-
tory determined energy levels, line positions were
computed by subtracting lower state energy from
upper state energy.

e Construction of a list of laboratory determined line
intensities: A list of line intensities was computed from
laboratory data given by Nezu et al. [397]. These data
are given in the form of band dipoles that are supple-
mented with Hermann-Wallis factors. From these
data, the intensities of individual lines were computed
by using the relevant Holn-London factor and the
equation given by Maki et al. [272].

e Construction of laboratory determined line list: Experi-
mentally measured line intensities were inserted into
the list of laboratory determined energy levels. In this
way, an HNC line list based upon laboratory measure-
ments was created.

o Augmentation of the laboratory determined line list with
ab initio line intensities: Many of the intensities for the
dipole allowed bands have not been measured. The
resulting gap in the laboratory determined line list
may only be filled by ab initio data.

Many of the transitions in the ab initio line list of
Ref. [263] have been assigned an approximate vibra-
tional quantum number. We were therefore able to
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insert the line strengths from Ref. [263] line list into
the GEISA-09 final HNC file, creating a more complete
list of lines.

e Augmentation with ab initio data and truncation: The
upper and lower energy levels for many strong room
temperature lines have not been determined. In order
to account for these strong lines the HNC GEISA-09 line
list was augmented with purely ab initio line frequency
and intensity data from Ref. [263]. Finally, 3498 entries
have been suppressed from the original file because of
lack of upper vibrational quanta identification.

Recent reports on emission spectra of HNC [398,399]
not only provide many more experimental lines, but
also used in the analyses comparatively recent pure rota-
tional data [400,401]. These results will be used in
updated CDMS entries and may also be used in future
GEISA updates.

2.2.36. CgHg (molecule 47)

Benzene (CgHg) (benzol, benzin) is an aromatic hydro-
carbon produced in the Earth’s atmosphere and is found
in air due to emissions from the burning of coal and oil
and also from gas stations, and from motor vehicle
exhaust. Benzene is also of importance for astronomical
studies. The high abundances of N, and CH, in the atmo-
sphere of Titan, Saturn’s largest moon lead to high
abundances of nitrogen and carbon compounds, and its
atmosphere and smog-like haze are of particular interest
because of its similarity to the atmosphere that may have
existed on Earth before life began. Polycyclic Aromatic
Hydrocarbons (PAHs) are important interstellar species,
and their precursor benzene (CgHg) has been detected in
our solar system, in particular on Titan. Benzene was
identified on Titan through ISO and Cassini/CIRS data
[312]. It has also been measured in the upper atmo-
spheres of Jupiter at midlatitudes and Saturn (disk aver-
age) [402].

Benzene is introduced in GEISA-09 for the first time.
Line parameters for the v, band of benzene near
678 cm~! were provided by Dang-Nhu (private commu-
nication) and generated from the molecular constants and
band strength compiled in Dang-Nhu and Pliva [403].

Two approaches were used to determine the absolute
intensities. Dang-Nhu et al. [404] made a line-by-line
study, using a very high resolution tunable diode laser
which yielded 30 individual intensities, from which a
vibrational strength was derived (see also [403]). At the
same time, a study at medium resolution (1 cm~') per-
formed on spectra recorded at LISA by Raulin et al. [405]
provided the integrated band intensity of benzene in the
spectral region which was related to the previous one
through the vibrational partition function.

This dataset (9797 lines) was first applied to modeling
of the Titan spectrum in Coustenis et al. [354,318]; see
Figs. 5, 6, 8, 9 and 11a therein.

2.2.37. CoHD (molecule 48)

The line list of monodeuterated acetylene is new in the
GEISA database. The need for a line list of deuterated
acetylene arose following the recent detection of this

isotopologue in the atmosphere of Titan by Coustenis
et al. [406]. The line list has been assembled by a joint
effort of several laboratories [407]. It is based on new
band intensity measurements performed at a resolution
of 0.5 cm™! in France (LISA) and a new analysis done in
Belgium (ULB, UCL) of the high resolution spectra of CbHD
recorded in Italy (University of Bologna) [407]. The new
global fit was obtained by using the computer package
developed in UCL and dedicated to both energy and
intensity treatments [408,409]. Included lines belong to
both bending modes v, and vs which could be detected
on Titan thanks to their strong Q-branch at 519 and
678 cm~!, respectively. Lines belonging to both strong
stretching modes v; and vs centered at 3335.6 and
2583.6 cm ™!, respectively, are also present in the new
line list. A total of 15,512 lines (348 bands) are present in
the list with a minimum intensity of 1.6 10~2°cm~!/
(molecule cm~2) at 296 K. All five vibrational modes and
both ¢ values are used in the vibrational assignment of the
upper and the lower level of each transition (vy, Vo, V3, Vg,
Vs, €4, €5). The line broadening parameters of C,HD have
been assumed to be equal to those of the most abundant
C,H, isotopologue.

The study of deuterated acetylene in planetary atmo-
spheres is of great importance and in particular the
determination of D/H isotopic ratios. The recent detection
of '2C,HD in Titan allowed a value of D/H [406] to be
determined. This could be compared to the values obtain
for CHy (CH3D) and H, (HD) as C,HD is the third
deuterated molecule to be detected in Titan’s atmosphere.

2.2.38. CF4 (molecule 49)

In the previous editions of GEISA, tetrafluorocarbon
(CF4) was referred to as CFC-14 and was only included in
the cross-sections part [410], with no line list. It is,
however, a strong greenhouse gas of both anthropogenic
and natural origin [411,412]. Its concentration is increas-
ing in the atmosphere [413,414]. Although it has been
identified and measured from balloon-borne measure-
ments [415], its spectroscopy remains only very patchily
investigated, for much the same reasons as for SFg (pre-
sence of many hot bands, dense spectrum with clustered
lines). Its infrared spectrum is dominated by the strong vs
stretching fundamental band at 1282 cm~! [415], this
band being strongly coupled with the first overtone of the
v, bending mode.

The v, (around 15.8 pm) and 2v,4/vs3 regions (around
7.3 um) have been recently reinvestigated, thanks to
several new Fourier transform infrared spectra recorded
at a resolution of 0.003 cm . Just as in the previous work
of Gabard et al. [416], a simultaneous analysis of the
ground state, v4, V3, 2v4 and v3 —v3 bands was performed,
thanks to the XTDS and SPVIEW programs [417] devel-
oped by the ICB group. Compared to Ref. [416], the
present work extends the analysis to much higher J values
(70 instead of 40 for v4 and 63 instead of 32 for the 2v4/v3
dyad). As for absorption intensities, it was possible to
go a bit further than for SFs. By calculating synthetic
spectra for exactly the same physical conditions as for
the experiment, it was possible to fit the v, and v3
dipole-moment derivatives. The results compare very
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well to the literature values of Papousek et al. [418]. The
details of this new analysis will be given in a forthcoming
paper [419].

This analysis allowed to generate the first reliable line
list for '2CF, that covers the spectral ranges 600 to
670cm~! (v4) and 1276 to 1290 cm~! (2vg4/vs). Tetra-
fluorocarbon becomes GEISA-09 molecule number 49. The
precision for line positions is estimated to be around
0.001 cm™!, up to J=60. The intensity accuracy, however,
may not be better than 20%, especially for the high-J
regions. Line-broadening coefficients were taken from Ref.
[420]. The newly archived CF, line list comprises 60,033

entries (5 bands) in the spectral range 594-1312 cm~ .

2.2.39. CH3CN (molecule 50)

CH3CN (methyl cyanide, acetonitrile, ethanenitrile), a
molecule of astronomical and atmospheric importance, is
a new entry in GEISA-09. Line parameters of CH5CN are
needed for planetary studies because this species has
been observed, by heterodyne millimeter wave spectro-
scopy from the ground [421], on Titan. The dissociation of
N, leads to the formation of nitriles such as HCN, HC3N
and C;N,, identified for the first time by the Voyager
probes in the earlier 1980s. One of the goals of the
Cassini-Huygens mission, investigating the Saturn system
between 2004 and 2008, was to map all the photochemi-
cal compounds, hydrocarbons and nitriles, in order to
better understand the photochemical cycle of Titan and
its coupling with the dynamics and the production of
organic aerosols [312,422]. CH3CN spectra have been
observed in comets [423], and in interstellar molecular
clouds [424], as well.

CH3CN is also a gas present in the Earth’s atmos-
phere with a lifetime of several months, mainly emitted
through forest fires and then probably deposited in
the oceans. Since 1993, this molecule has been classified
as an atmospheric pollutant and is the object of a number
of varied chemical, biological and atmospheric [425-428]
studies.

The GEISA-09 CH3CN line list consists of spectroscopic
parameters for two different regions.

Region 1: as the result of a multispectrum nonlinear
least squares fitting technique applied to measure accu-
rate zero-pressure line center positions, Lorentz self- and
N,-broadening coefficients and self- and N,-pressure-
induced shift coefficients, 3571 features have been
archived in the v, parallel band region between 890 and
946 cm~!. Published line positions and intensities from
Rinsland et al. [429] have been supplemented by unpub-
lished measurements from the same dataset, as well as
selected values from preliminary Hamiltonian calcula-
tions. Only lines with intensities greater than 10~2*
(cm~'/(molecule cm ~?)) at 296 K are included. The spec-
tral region from 918.5 to 920.3 cm~' (containing the Q
branch and the P1 and P2 manifolds) proved too dense to
measure directly and so these parameters are represented
by 326 calculated transitions of v4. Some 2243 lines are
given without quantum identifications; many are thought
to be hot band lines involving yet unanalyzed upper state
levels of v4+vg. The lower state energy of these uniden-
tified lines is set to the GEISA-09 standard missing value,

i.e, —0.9999. It should be noted that a number of hot-
band lines are not included in the list; this is most
noticeable at the hot band Q branch near 924 cm~'.
Measured self-broadening coefficients were available,
and identified lines with the same K quantum number
and the same or very close m were assigned approxi-
mately the same or interpolated values. The total number
of lines with self-broadening assigned in this manner is
2185. For the lines lacking measured or estimated Lorentz
half-width coefficients for air- and self-broadening,
default values of 0.14 and 1.5 cm~ ! atm~! at 296 K were
used, respectively (obtained as an approximate average of
measured values). The measured N, shifts [429], where
available, were inserted for air shifts. Unmeasured pres-
sure shifts are set to zero, the approximate average of the
measured values. There are no measurements of the
temperature dependence of the Lorentz half-width in air
and only one in N; [430], so the default n is set to the
single measured N, value of 0.72.

Region 2: an excerpt in the spectral range of 970-
1650 cm~! of an empirical “pseudo-line-list” (total extent
870-1650 cm '), where the v; band around 1050 cm™!
and the vs, vg, V7+vVvg bands around 1450cm™! are
located. This represents a total of 13,601 entries. A
pseudo-line list, typically derived by fitting equally
spaced "pseudo-lines” to laboratory spectra, is not
intended to supplant any proper quantum-mechanically
based line list. However, it provides a convenient means
for radiative transfer calculations in case quantum-
mechanically derived line lists are unavailable or unreli-
able. In the process of building up the GEISA-09 CH3CN
line list, the mixing of quantum-mechanically derived
lines and pseudo-lines has been avoided, as one cannot
expect to get realistic results in a radiative transfer
calculation if the quantum-mechanically derived lines
have not been taken into account during the derivation
of the pseudo-lines. The pseudo-line-list for CH3CN has
been successfully used to identify and quantify CH3CN in
the Earth’s atmosphere from balloon-borne solar occulta-
tion Fourier-Transform infrared measurements [428] and
to attempt its detection on Titan from Cassini CIRS
infrared data.

The CH3CN pseudo-line-list [431] was created based
on 29 laboratory spectra taken at PNNL. The measure-
ments and the absorption cross-sections, including
assignments of major bands, are described by Rinsland
et al. [432]. The cross-sections were converted back into
transmittance spectra from knowledge of the cell length
and gas concentrations. The resulting laboratory trans-
mittance spectra were then simultaneously fitted by
iteratively adjusting the strengths and ground-state ener-
gies of the pseudo-lines. At each line frequency, an
effective strength and ground-state energy was derived
by simultaneous non-linear least squares fitting to the 29
spectra. The air-broadened half-width was calculated
from the ground-state energy using a simple parameter-
ization that results in air-broadened half-widths between
0.04 and 0.08 cm~!/atm and gives the most appropriate
fit to the narrowest features in the considered frequency
region. The self-broadened half-width, the temperature
dependency of the air-broadened half-width, and the
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pressure shift were chosen to be values that are typical for
heavy molecules.

Due to the resolution of the laboratory spectra of
0.1125cm~! and their spectral point spacing of
0.0603 cm~!, a pseudo-line spacing of 0.05cm~! was
considered to be appropriate. Note that when the
pseudo-line-list is used in radiative transfer calculations,
it is recommended that the Doppler-width of the lines is
set to the value of the pseudo-line spacing. Otherwise
calculations for low pressures will lead to unrealistic
spikes at the positions of the individual pseudo-lines.

2.2.40. Non updated molecules

Since GEISA-03 no update occurs for the following
molecules: CO (molecule 5), OH (molecule 14), HF (mole-
cule 15), HCl (molecule 16), HBr (molecule 17), HI
(molecule 18), CIO (molecule 19), GeH,; (molecule 26),
HOCI (molecule 32), COF, (molecule 38) and HO, (mole-
cule 38). For HO,, a technical error in the GEISA-03
rotational quantum number identification is corrected in
GEISA-09.

3. GEISA-09 infrared absorption cross-sections
sub-database

The infrared absorption cross-section sub-database of
GEISA-03 contents has been extensively described in Refs.
[8,9] (see Table 2.5 of Ref. [9]). In the spectral range from
200 cm~! to 2000 cm ™!, 35 molecular species have been
already archived, i.e., CFC-13, CFC-113, CFC-114, CFC-115,
CFC-11, CFC-12, CFC-14, HCFC-22, HCFC-123, HCFC-124,
HFC-125, HFC-134a, HCFC-141b, HCFC-142b, HFC-152a,
HCFC-225ca, HCFC-225cb, HFC-32, HFC-143a, HFC-134,
N,Os, SFs, CIONO,; HFC-143, HCFC-21, CCly, CyFs, CoHa,
C2H4, C2H6, C3H8, C4H8, HN04, SFSCFg, HCH-365mfc. Note
that in this list, many of the molecular species are
identified by their common name (i.e., CFC-14 for CF,).

3.1. Complementary data for species already implemented
in GEISA-03

3.1.1. SFsCF; (trifluoromethyl sulfur pentafluoride)

SFsCF3 IR absorption cross-sections from M. Hurley
were implemented in GEISA-03. The absorption cross-
sections measured by Rinsland et al. [433], at five tem-
peratures between 213 and 323 K in the infrared bands of
SF5CF3 are newly added to GEISA-09. The spectra were
recorded at a resolution of 0.112 cm~"! using a commer-
cial Fourier transform infrared spectrometer and a 20 cm
temperature-controlled sample cell. The full spectral
range of the measurements was 520-6500 cm~!, with
only weak bands observed beyond 1400 cm~!. Absorp-
tion of thermal radiation in the 8-12 pm atmospheric
window region being important for climate change, the
measured integrated cross-sections of the significant
absorption bands in that spectral region have been added
to the GEISA archive as summarized in Table 10. It has to
be noted that the SFsCF; atmospheric growth has closely
paralleled the rise of SFg during the past three decades,
with an estimated radiative forcing of 0.57 W m 2 ppb !,
slightly higher than for SFg [434].

3.2. Molecular species added since GEISA-03 edition

3.2.1. CgHg (benzene)

To provide a database for both Earth’s and planetary
atmosphere studies (as an example, benzene has recently
been detected in the atmosphere of Titan as the first PAH
of this kind [312]), integrated band intensities of benzene
at temperatures of 278, 298, and 323 K, in the spectral
range 600-6500 cm ™! by Rinsland et al. [435], have been
added to GEISA-09 IR cross-sections archive. These data
derived from pressure broadened (1 atm N,) laboratory
spectra of benzene vapor (in natural abundance) recorded
at PNNL with a 0.112 cm~! resolution Bruker-66 V Four-
ier transform spectrometer configured to operate in the
mid-infrared. Using very high precision capacitance nan-
ometers, over nine sample pressures were recorded
for each of the three temperatures. Hard-mounted into
the spectrometer, a temperature-stabilized static cell
(19.94 cm path length), was used for support of the
samples introduced into it. Two-hundred fifty-six inter-
ferograms were averaged for each sample spectrum.
A composite spectrum was calculated for each cell tem-
perature from the individual absorbance spectra recorded
at that temperature. The average uncertainty (NIST type-
A) is, respectively: 0.40%, 0.38% and 0.54% for the 278,
298, and 323 K spectra. The number density for the three
composite spectra was normalized to 296 K. The spectra
give the absorption IR cross-sections (cm? molecule™?,
naperian units) of benzene as a function of wavenumber,
as summarized in Table 10 for GEISA-09 contents.

3.2.2. CHsCN (acetonitrile, — methyl cyanide)

Infrared cross-sections were measured at the Pacific
Northwest National Laboratory by Rinsland et al. [432].
These 29 spectra covered 600 and 6500 cm~! with a
resolution of 0.1125 cm~! and were measured at three
different temperatures (276 K, 299 K, and 324 K). They
were recorded with different CH3CN volume mixing ratios
at 1 atm pressure using N, as pressure broadening gas.
Table 10 summarizes the related GEISA-09 contents.

3.2.3. C,H3NOs (peroxyacetyl nitrate, — PAN)

PAN is an interesting molecule, linking carbon and
nitrogen chemistry, which has recently gained a new
importance for remote sensing. The terrestrial spectro-
scopic signature of PAN in the thermal infra-red was first
observed in Los Angeles smog [436] but the ability to
observe PAN concentrations more widely has been revo-
lutionized by recent detections in high resolution spectra
obtained in balloon-borne [437] and space-borne experi-
ments [438,439]. New spectroscopic data for PAN, in the
form of cross-sections, have therefore been included in
the GEISA database for the first time, based on the
measurements of Allen et al. [440,441]. The cross-sections
cover the spectral range between 560 and 1400 cm ™~ ! at
three temperature (295, 273, 250 K), and between 1686
and 2000 cm ™! at two temperatures (295 and 250 K). The
data include all bands from v4 to vq9, except for vig
centered at 1653 cm~! which is detected in the original
measurements at 295K but is not included here
because of weakness of the band and residual water vapor



N. Jacquinet-Husson et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 2395-2445 2427
Table 10
Summary of GEISA-09 update and additions for infrared cross-sections.

Molecule Temperature (K) Spectral range (cm™') Foreign broadening pressure® (Pa) Refs.

Trifluoromethyl sulfur pentafluoride, SF5CF3 213 600-2600 101,324.72 [433,434]
243
278
298
323

Benzene, CgHg 278 600-6500 101,324.72 [435]
298
323

Acetonitrile, CH;CN 276.1 624-4574 101,324.72 [429,432]
298.7
3241

PAN, C,H5NOs 250 560-2000 0 [436-443]
273 560-1400
295 560-2000

Acetone, (CH3),CO 214.0 600-1800 0 [444-447]
2234 0
2235 20,811.60
2235 80,260.10
223.6 50,902.50
2334 19,985.00
2334 50,022.50
2334 80,113.40
233.5 0
253.3 50,089.20
2533 79,886.80
2534 20,051.70
253.8 0
2723 20,025.00
2723 49,915.90
272.3 92,765.70
272.6 0
297.4 20,718.30
297.5 50,062.50
297.5 93,325.60
297.8 0

2 Pressure=0.0 Pa: spectra measured for pure gas.

contamination. The band assignments are based on those
reported in Gaffney et al. [442] and Bruckmann and
Wilner [443]. The five main bands are v4, Vs, Vg, V19 and
V16 centered at 1842, 1741, 1302, 1161.5 and 791.5cm ™',
respectively; a small shift of 1 cm~! was observed in the
peak of the v, band at 1842 cm~! with temperature
[441]. Uncertainties in the cross-sections were estimated
to be 5% at 250 K [441] rising to 7% at 295 K [440]. See
Table 10 for details.

3.2.4. (CH3),CO (acetone)

Acetone is a fundamental molecule in volatile organic
chemistry which evaporates rapidly, even from water and
soil. Once in the atmosphere, it is degraded by UV light
with a 22-day half-life. Acetone dissipates slowly in soil,
animals, or waterways since it is sometimes consumed by
microorganisms, but it is a significant groundwater con-
taminant due to its high solubility in water. Acetone may
pose a significant risk of oxygen depletion in aquatic
systems due to the microbial activity consuming it.

The spectroscopic signature of acetone in spectra of
the terrestrial atmosphere has been reported first in the
Vie/V23 band complex centered at 530 cm ™! (citation in

[444]) and in the v;7 band at 1220 cm~! [445,437] and in
the vy Q-branch at 1365 cm ™! [439]. Hence it has been
important to include new spectroscopic data for acetone,
under the form of cross-sections, in the GEISA database
for the first time, based on the measurements of Waterfall
[446]. The cross-sections, at spectral resolution of
0.03cm~!, cover the spectral range between 600 and
1800 cm ! around six temperature series (214, 223, 233,
253, 272 and 297 K); see Table 10 for precise details. The
data include the v;g band centered at 830 cm !, the v;7 at
1218 cm~!, the v,6/vs bands close to 1360 cm™! over-
lapping with the unresolved bands of vq5,—v4 and vy,
centered between 1430 and 1460 cm !, and the v; band
centered at 1738 cm~!; band assignments are taken from
Wang et al. [447]. The v; band, centered at 777 cm !, and
the v,2/vg near 1093 cm~! are only very weakly present
in the measured cross-sections. The main cross-section
influence is for the strongest bands observed between
1200 and 1800 cm~! for which uncertainties range from
5% (7% for the center of the v;, 1738 cm~! band) at the
strongest parts of the band to 10% towards the edges. For
the 830 cm~! band, errors are approximately 12% at band
center rising to greater than 20% at the band edges.
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4. GEISA-09 absorption cross-sections sub-database
in UV/visible regions

For molecules absorbing in the UV and visible spectral
regions, except for O,, H,O, NO and OH, there are no
individual line lists available, since most molecules and
radicals show rather broad-band absorption features due
to repulsive potential curves or surfaces in the upper
electronic states of the relevant transitions, or due to pre-
dissociation. Therefore, absorption cross-sections at all
relevant temperatures (and in some cases, pressures),
have to be used.

The requirements for the accuracy of molecular
absorption cross-sections in this spectral range are most
important for strong absorbers, especially for Os, but it is
also important to highlight the need of very accurate
spectral calibration (hence reference data derived from
FTS are usually recommended) and for a high dynamic
range and absolute consistency between different spectral
regions (e.g., between the ultraviolet and visible bands for
05, or the consistency with respect to the mid-infrared
bands). The latter requirements are especially important
when the retrieved atmospheric data are used for photo-
chemical modeling or for chemical budget calculations,
where uncharacterized biases between different spectral
regions may lead to difficult problems.

In the GEISA database, only UV-visible reference
spectra of such molecules that have already been detected
in the Earth’s or planetary atmospheres are presented, i.e.,
contrary to other databases which focus on photochemi-
cal data (e.g., the NASA-JPL, NIST or IUPAC recommenda-
tions) or offer a complete coverage of all absorption
spectra (e.g., the MPI Mainz and SoftCon databases). It is
also important to note that, in contrast to the HITRAN
database, for the sake of coherence of future studies, and
to facilitate the comparison with previous work, the
GEISA database contains different sets of relevant absorp-
tion cross-sections, i.e., multiple data sources and data
sets for the same species; however recommendations are
made for each molecule.

The GEISA database contains UV-visible absorption
cross-sections for the following molecules and radicals:
NO,, CS;, O3, SO,, 05,-0, (04), OCIO, H,CO, OBrO, BrO, NO3,
HONO, IO, OIO, and aromatic hydrocarbons (i.e., CgHg,
C7Hg and the three isomers of (CgH4(CHs), as well). Here
below, each molecule and the relevant reference data in
the new GEISA-09 edition will be discussed individually.

4.1. NO, (nitrogen dioxide)

For NO,, there is quite a variety of different laboratory
measurements of ultraviolet-visible absorption cross-sec-
tions. For atmospheric applications, the currently recom-
mended data set by Orphal [448] is the one of Vandaele
et al. [449], but it is important to stress that also the data of
Voigt et al. [450], Yoshino et al. [451], Harder et al. [452]
and Frost et al. [453] are of high quality and show excellent
agreement with each other. The cross-section of Harder
et al. may contain a slight contamination by HONO,
however. For applications where a very high signal-to-
noise ratio is required or in spectral regions where the

previously mentioned NO, absorption cross-sections are
limited, the data recorded with GOME by Burrows et al.
[454] or with SCIAMACHY by Bogumil et al. [455] are
recommended (again, it is important to note that these
data are limited by the spectral resolution of the instru-
ments). It has to be recalled that, in general, the cross-
sections recorded by an FTS have a wavelength calibration
of better than 0.01 nm [448] which is an important
advantage for atmospheric applications, in particular when
retrieving several absorbers simultaneously.

4.2. CS, (carbon disulfide)

Small amounts of carbon disulfide CS, are released by
volcanic eruptions and marshes. The absorption cross-
sections, recorded with an FTS at 294 K covering the
290-350 nm spectral range are from Vandaele et al. [456].

4.3. 03 (ozone)

As for NO,, there exist many laboratory measurements
of UV-visible absorption cross-sections at atmospheric
temperatures (see [448]). However, only a few of them
cover the entire spectral range from the ultraviolet to the
near-infrared. Therefore, it is difficult to recommend one
single data set that would be best suited for all applica-
tions. For the Huggins bands (300-360 nm), the recom-
mended reference data are those of Brion et al. [457] and
those of Bass and Paur [458], since both data sets cover
most relevant temperatures (note however that the data
of Brion et al. are not available below 218 K) and have
been recorded at high resolution. While the data of Bass
and Paur were used as some kind of standard during the
past 20 years, more recent studies tend to recommend the
data of Brion et al. for atmospheric remote-sensing
applications (since they show better wavelength calibra-
tion, wavelength sampling, less noise and less inconsis-
tencies concerning the temperature dependence of the
cross-sections). For applications where absorption cross-
sections over a broader spectral range are needed (in
particular in the visible and near-infrared, i.e., the Chap-
puis and Wulf bands, the Os cross-sections recorded with
GOME [454] or with SCTAMACHY [455] are recommended.
These absorption cross-sections show also a very high
signal-to-noise ratio, but are partly limited by the spectral
resolution of the instruments. If O3 cross-sections at very
high spectral resolution are needed, then the data of Voigt
et al. [459] are recommended.

4.4. SO, (sulfur dioxide)

SO, presents three main regions of absorption in the
near ultraviolet domain. The strongest band lies in
the 45,000cm~" (220 nm) region and corresponds to
the C'B,-X'A; electronic transition. A strong absorption
structure extends between 29,000 and 40,000 cm~!,
which can be ascribed to at least two electronic transi-
tions. Underlying the structured bands of the A'A,-X'A;
[460], the ‘continuous’ absorption has been attributed to
the B'B;-X'A; transition, which has been predicted by
theory [461] and measured by Brand et al. [462]. The
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A'A,-X'A; transition is forbidden but is observed because
of strong vibrational interactions through the v3 vibration
mode and is strongly perturbed by the !B; state. The
allowed transition B'B;-X'A; is so perturbed that no
rotational or vibrational analysis is possible. It forms a
continuum due to the density of weak absorptions.
A weak absorption feature arises in the 25,000-
29,000 cm~! region (345-400 nm). It has been assigned
to the a®B;-X'A; electronic transition and is a spin-
forbidden transition.

In the previous edition of GEISA [8,9] the UV/vis data
set for SO, consisted in cross-sections recorded with the
SCIAMACHY spectrometer [455], covering five tempera-
tures between 203 and 293 K and interesting for plane-
tary science application. The 2009 update consists in
recently obtained absorption cross-sections, at high reso-
lution and at high temperatures, in support to planetary
applications [463,464]. They were recorded in the 24,000-
44,000 cm ! spectral range (227-420 nm) with a Fourier
Transform spectrometer at a resolution of 2cm™!
(0.45 cm MOPD and boxcar apodization). Pure SO, sam-
ples were used and measurements were performed at
room temperature (298 K) as well as at 318, 338 and
358 K. Temperature effects were investigated and were
found in favorable agreement with existing studies in the
literature. Comparison of the absorption cross-sections at
room temperature [465,466] shows good agreement in
intensity with most of the literature data, but shows that
most of the latter suffer from inaccurate wavelength scale
definition. Moreover, literature data are often given only
on restricted spectral intervals, whereas this new data set
offers the considerable advantage of covering the large
spectral interval extending from 24,000 to 44,000 cm ™!,
at the four temperatures investigated. These data are also
available in digital form from the website of the Belgian
Institute for Space Aeronomy (http://www.aeronomie.be/
spectrolab/).

4.5. 0,-0, (04) (the so-called oxygen “dimer”)

These broad features are mainly used for air mass
determination in atmospheric remote-sensing applica-
tions. It is rather difficult to recommend one particular
set of data since the differences between the available
cross-sections are still not well understood. Therefore, the
data of Greenblatt et al. [467], of Newnham and Ballard
[468], and of Vandaele et al. [456] are all available in the
archive.

4.6. OCIO (chlorine dioxide)

OCIO is involved in polar stratospheric chemistry,
linking the catalytic cycles of ClIO and BrO, and has been
observed in ultraviolet-visible spectra from ground, air-
borne platforms and satellites. It is important to monitor
stratospheric OCIO in order to validate the quantitative
understanding of ozone destruction in polar winter. As in
the previous edition of GEISA, the UV-visible absorption
cross-sections of Kromminga et al. [469] that were
recorded at different temperatures using high-resolution
Fourier-transform spectroscopy are recommended. For

the sake of coherence with previous studies, GEISA also
contains the OCIO cross-sections of Wahner et al. [470].

4.7. H>CO (formaldehyde, also called CH>0 or HCHO)

Formaldehyde is another important source of OH
radicals in the troposphere, and one of the smallest
organic molecules in the atmosphere. Gratien et al.
[471] have demonstrated that the high-resolution H,CO
absorption cross-sections of Meller and Moortgat [472]
are in excellent agreement with the available infrared
cross-sections. For applications requiring a very high
signal-to-noise ratio, the data recorded with SCCAMACHY
[455] may also be of interest.

4.8. OBrO

Only cross-sections recorded by an FTS were selected.
For OBrO (385-616 nm spectral range) cross-sections are
available only at room temperature [473].

4.9. BrO (bromine monoxide)

BrO is observed in the stratosphere but also in the
marine troposphere and in volcanic plumes. There are two
sets of data which have been recorded using high-resolution
Fourier-transform spectroscopy and cover all relevant
atmospheric temperatures: Wilmouth et al. [474] and
Fleischmann et al. [475]; both show very good agreement.
As for OCIO, for the sake of coherence with previous
studies, GEISA also contains the BrO absorption cross-
sections of Wahner et al. [476] that were used as refer-
ence spectra, before the new data became available.

4.10. NOs (nitrogen trioxide; the nitrate radical)

For NOs, the main night-time oxidant in the tropo-
sphere, but also strongly occurring in the stratosphere,
the recommended data set for all atmospheric tempera-
tures is the one of Yokelson et al. [477]; note however
that there exists a room-temperature spectrum that was
recorded using high-resolution Fourier-transform spec-
troscopy [448]. The latter paper also provides an accurate
theoretical model for the temperature dependence of the
strong peak at 662 nm, which is based on the molecular
symmetry and structure of the radical.

4.11. HONO (nitrous acid)

Nitrous acid is an atmospheric species that has
received a lot of attention in the past decades, since it is
a source of OH radicals in the troposphere, while its
sources are still not well understood. A recent study by
Gratien et al. [478] has shown that the HONO absorption
cross-sections of Bongartz et al. [479] and of Stutz et al.
[480] are in very good agreement with each other and
with the available infrared cross-sections. Therefore, both
data sets are recommended.



2430 N. Jacquinet-Husson et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 2395-2445

4.12. CHOCHO (glyoxal)

Glyoxal is a small organic molecule involved in tropo-
spheric chemistry and aerosol formation. It has only
recently been measured for the first time in the Earth’s
atmosphere using optical methods. Its sources are still not
fully understood, especially since some CHOCHO is also
observed over the Pacific Ocean. The recommended
absorption cross-sections for CHOCHO are those of Volk-
amer et al. [481] recorded using high-resolution Fourier-
transform spectroscopy.

4.13. 10 (iodine monoxide)

10 has been observed only in the marine troposphere,
and an upper limit of less than 1 pptv has been estab-
lished for stratospheric I0. The reference data in GEISA are
the cross-sections of Spietz et al. [482] which have an
excellent signal-to-noise ratio, rather high resolution, and
are in good agreement with other studies and with
photochemical models of 10 chemistry following flash
photolysis of suitable precursors.

4.14. OIO (iodine dioxide)

As for 10, the OIO radical has been observed only in the
marine troposphere. Its atmospheric relevance has been
established only as late as 1996 when it was observed for
the first time in flash-photolysis experiments by Himmel-
mann et al. [483]. The reference data in GEISA are the
absorption cross-sections of Gomez-Martin et al. [484].

4.15. Aromatic hydrocarbons

UV absorption cross-sections (cm? molecule ~!) of five
gaseous aromatic hydrocarbons have been measured with
a FTS Bruker IFS120M at the resolution of 1 cm~! (0.9 cm
MOPD and boxcar apodization) over the 30,000-
42,000 cm~"' spectral range (238-333 nm). The mole-
cules, benzene (CgHg), toluene or methylbenzene (C;Hg),
and the three isomers of dimethyl-benzene (CgH4(CHs),)
also called meta-, ortho-, and para-xylene, were chosen
for their importance in the chemistry of tropospheric
ozone [485], in urban air quality problems [486] and in
astronomical studies [317,318,402,487].

The recordings were carried out under different pres-
sure and temperature conditions with pure samples. The
complete dataset is composed of absorption cross-sec-
tions for: (i) benzene at 253, 263, 273, 283 and 293 K, (ii)
toluene at 263, 273, 283 and 293 K, and (iii) the three
isomers of xylene at 273, 283 and 293 K. Wavenumbers
are given by increments of 0.2 cm~!. Systematic and non-
systematic errors are given separately, a value of 8% being
estimated for the former and individual values being
reported in a separate column for the latter. The experi-
mental set-up and the procedure of analysis are given in
details in [488].

Comparisons with recent studies in the same UV
region [488-491] show that large discrepancies are pre-
sent in some cases which are largely attributed to the
experimental difficulties and to a resolution effect.

Compared to these studies, a better spectral resolution,
an accurate wavelength scale, and several atmospheric
temperatures are provided. A linear parameterization for
the temperature effect is also proposed for benzene and
toluene in support of remote sensing atmospheric studies
both on Earth and on other planets. These data are also
available in digital form from the website of the Belgian
Institute for Space Aeronomy (http://www.aeronomie.be/
spectrolab/).

5. GEISA-09 sub-database on microphysical and optical
properties of atmospheric aerosols

Besides the molecular species which define the gas-
eous infrared opacity in the Earth’s atmosphere, aerosol
particles also contribute to this opacity. Consequently, a
GEISA aerosols sub-database has been constructed. It
gathers the micro-physical and optical properties from
four published aerosol data catalogs, i.e., Massie
[492-494], Rublev [495], Hess et al. [496], Kdpke et al.
[497], the overall content of which deals with the archive
of complex refractive indices and possibly computed
optical related properties, for selected basic aerosol com-
ponents. Softwares for data management and user-
selected aerosol mixtures elaboration are available
as well.

The GEISA-09 aerosols sub-database contains data on
microphysical and optical properties of basic aerosol
components. The following 4 sub-databases are included:

5.1. A database on refractive indices of basic atmospheric
aerosol components

This database by Massie [492-494] comprises an
extensive archive of complex refractive indices, deter-
mined both in situ and in laboratory, from spectral
transmission and reflection measurements (over 40 refer-
ences), of various aerosol components, i.e.,

e Solid substances (0.33-50,000 cm~!)

e Water ice (0.-22,570 cm™ 1)

e Water droplets (0.33-15,000 cm ™ 1)

e Water soluble components (250-50,000 cm™!)

e H,S0, solutions (0.-50,000 cm™!)

e HNOs solutions (0.-16,382 cm ™)

e Thin films (482-7000 cm ™)

e Ternary H,SO4/HNO3/H,0 solution droplets
(2.000-12.1126 cm™1).

5.2. The aerosols database from LITMS

The first part of the archive [495] consists in complex
indices of refraction of aerosol components, which have
been used for the computation of archived aerosol inte-
grated optical properties (extinction coefficient, single
scattering albedo, asymmetry factor). In the second part,
the so-called AERCOMP (FORTRAN code) software pack-
age, allowing the determination of optical properties for
user-defined aerosol mixtures, has been included with its
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associated files for basic aerosol constituent optical prop-
erties and related scattering phase functions, as well.

5.3. The database and associated software package OPAC

The first part of this archive [496] is a data set of
microphysical properties and the associated optical prop-
erties of:

e Ten basic aerosol components: Insoluble, soot, water
soluble, two sea salt modes (various kinds of salt
contained in seawater), three mineral modes (mixtures
of quartz and clay minerals), mineral transported,
sulfate droplets.

e Six water clouds: Stratus (continental and maritime),
cumulus (continental (clean and polluted) and mar-
itime), fog, and three kinds of cirrus ice clouds, both in
the solar and terrestrial spectral range.

The second part is a FORTRAN program making it
possible to extract data from the above archive and
allowing for the calculation of any user-defined mixtures
of these components. A set of computed typical mixtures
is archived, as well.

5.4. The Global Aerosol Data Set GADS

Global fields of all optical parameters necessary for an
estimate of the radiative forcing by aerosol particles
and to quantify the resulting climate effects are not
available from measurements due to the multiple influ-
ence parameters. Therefore, using the OPAC aerosol
archive, GADS (Kopke et al. [497]), provides the related
global aerosol distribution as climatologically averaged
values both for the winter (December through February)
and summer (June through August) seasons on a global
grid with a resolution of 5° x 5° longitude and latitude,
independently of the components selected in OPAC.
More details on the archived files structure is given in
Ref. [498].

5.5. GEISA interactive web distribution through Ether
Products and Services Centre

The scientific input into GEISA is maintained at LMD
(Ecole Polytechnique): http://ara.abct.Imd.polytechnique.fr)
which involves selection and collection of new or enhanced
spectroscopic data in cooperation with spectroscopy labora-
tories, both theory and experiment, and experts; processing
of the data; software development and maintenance for the
data base management and products extraction.

The GEISA on line web access and its associated
maintenance are responsibility of the Ether Products and
Services Centre (http://ether.ipsl.jussieu.fr), at IPSL, where
the database is implemented. Ether is especially involved
in distribution and generation of products of interest to
the Atmospheric Chemistry Research community.

The GEISA web site is freely accessible, via the
GEISA logo, through the welcome page of the Ether

web site, which offers the following GEISA interrogation
facilities:

e Very detailed information on the available spectroscopic
data, i.e., spectroscopic parameters of the individual lines
and cross-sections (IR and UV/vis), and optical and
microphysical properties of atmospheric aerosols as well.

o FTP access to file data for a quick download of the
database, partly or fully.

e Interactive access to the individual line spectroscopic
parameters, making possible sharper search and extrac-
tion of data of interest. In this purpose, six options are
available for display, histograms visualization and
extractions of user’s selected data information.

6. Concluding comments

The 2009 edition of GEISA exhibits important updates in
spectroscopic parameters and significant addition of
archived molecular species (line transitions and cross-
sections sub-databases), with an associated extension of
spectral ranges (especially towards near IR regions). Some
specific results of this effort are especially valuable for
various current research programs aiming at a better knowl-
edge of the Earth’s and planetary atmospheres, as well as
climate and environmental evolution understanding. Exam-
ples of such updates, among the ones detailed above are:

(a) Within the frame work of the IASI METOP program, and
ISSWG associated GEISA/IASI efforts, among the 14
molecular species selected for operational meteorological
soundings, i.e., H,0, CO;, O3, N0, CO, CHy, O, NO, SO,
NO,, HNOs, OCS, CyH,, and N,, the spectroscopic
parameters of eleven of them have been updated in
the GEISA/IASI spectral range (599-3001 cm™!); three
of them (CO, O,, OCS) are unchanged in this specific
spectral region (however O, and OCS are updated
elsewhere in the database). Recently, in conjunction
with the 2009 update, to aid the atmospheric chemistry
and climate monitoring capabilities of IASI soundings, 6
additional molecular species have been included in the
GEISA/IASI archive, i.e., HCN, NHs3, HCOOH, C;H,4, CH30H
and H,CO (this list is not final or complete) as well as
PAN cross-sections. All these molecular species have
been updated in GEISA-09 and PAN is a new cross-
section entry. HCN is almost totally new in GEISA-09.

(b) Related with spectroscopy requirements for space
studies of outer planets and Titan, as documented in
Ref. [8], important subsequent updates have been done
in GEISA-09. Data on complementary new molecular
species, to those already archived in GEISA, have been
included in GEISA-09, i.e., CcHg (individual lines and
cross-sections as well) and C;HD; among the updated
molecules are especially: C4H,, HC3N, CoHg, CoHo, CoHy,
HCN, C3H,4, CH3CN. Also HNC is introduced as a new
molecular species. HCN and HNC molecules are of
great astronomical interest. They have been observed
in many galactic and extragalactic objects, ranging
from circum-stellar masers through interstellar clouds
to planetary atmospheres.
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Even regularly updated and evolving spectroscopic
databases, such as GEISA, still have their limitations and
shortcomings; these have to be continuously corrected or
improved upon to meet the requirements of a diverse
group of users. Detailed examples, but a non-exhaustive
list of these requirements was given in Ref. [8]. Among
those still not met we can underline:

(@) From the “Summary Report on the Second IASI Inter-
national Conference” [498]; http://smsc.cnes.fr/IASI,
among the conclusions on IASI related RTM spectro-
scopy problems still to be solved, high priority was
given to the investigation of areas mainly related to
H,0, CO, and CH4, summarized as follows:

e For H>0 (highest priority): Review of the accuracy of
line widths (could be more important than the
intensities); review of the continuum in the short
wave window region (i.e., band 3; spectral range
2000-2760 cm~'); measurements of widths and
shifts should be made (with temperature depen-
dence if possible).

e For CO,: The inconsistency between CO, v, and
CO, v3 bands bias by improving the CO, spectro-
scopy in the v band.

e For CH,;: Improvement of the methane spectro-
scopy, introducing line mixing.

It has to be noted that, since this report and GEISA-09
have been issued, Toth et al. [499] revisited H;SO line
strengths in the v, and 2v, — v, bands at 6 pm. These
results will be considered for the next GEISA Edition.

(b) In the frame work of space studies of outer planets
and Titan: besides the 2009 updates described above,
the description of data that remain to be obtained and
implemented in GEISA, as given in Ref. [8], is still
available.

Finally, in terms of outstanding spectroscopy issues,
among the most important actions already underway, but
which must be reinforced and maintained, is the neces-
sary validation of archived spectroscopic data. This and
other activities will be performed in conjunction with the
recently started VAMDC European project (http://www.
vamdc.eu). This project aims at building an interoperable
e-Infrastructure for the exchange of atomic and molecular
data [500].
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Appendix A. List of acronyms

4A Atlas Automatisé des Absorptions
Atmosphériques

4A Automatized Atmospheric Absorption Atlas

4A/OP  4A/O Perational release

ACE Atmospheric Chemistry Experiment

AERCOMP Aerosol Composite

AFGL Air Force Geophysics Laboratory

AGB Asymptotic Giant Branch

AIRS Advanced InfraRed Sounder

ALMA Atacama Large Millimeter/submillimeter Array

ARA Atmospheric Radiation Analysis

BIRA/IASB Institut d’Aéronomie Spatiale de Belgique/
Belgian Institute for Space Aeronomy

BEAMCAT BErnese Atmospheric Meta Catalog Access
Tool

CDMS Cologne Database for Molecular Spectroscopy

CDSD Carbon Dioxide Spectroscopic Databank

CIRS Composite InfraRed Spectrometer

CNRS Centre National de la Recherche Scientifique
(France)

CNES Centre National d’Etudes Spatiales (France)

CSE Circum Stellar Envelope

CW-CRDS Continuous  Wave-Cavity Ring  Down
Spectroscopy

DU Denver University

ENVISAT ENVIronmental SATellite

EPS European Polar System

EOS-aqua Earth Observing System-water

EU European Union

EUMETSAT European Organisation for the Exploitation of
Meteorological Satellites

FT Fourier Transformed
FTIR Fourier Transformed InfraRed spectroscopy
FTS Fourier Transform Spectrometer

GADS Global Aerosol Data Set

GEISA Gestion et Etude des Informations Spectroscopi-
ques Atmosphériques; Management and study
of Atmospheric Spectroscopic Information

GOME  Global Ozone Monitoring Experiment
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GOSAT Greenhouse Observing SATellite project

GSMA  Groupe de Spectroscopie Moléculaire et Atmo-
sphérique (France)

HITRAN HIgh-resolution = TRANsmission
absorption data base

HTDS Highly spherical Top Data System

HWHM Line Half-width at Half Maximum (line

molecular

broadening)

IASI Infrared Atmospheric Sounder Interferometer

ICB Institut Carnot de Bourgogne

INSU Institut National des Sciences de I'Univers
(France)

IPSL Institut Pierre Simon Laplace

ISM Inter-Stellar Medium

IAO Institute of Atmospheric Optics (Russia)

IR InfraRed

IRS InfraRed Spectrograph

ISO Infrared Space Observatory

ISSWG  IASI Sounding Science Working Group

IUPAC  International Union of Pure and Applied
Chemistry

JPL Jet Propulsion Laboratory (USA)

LADIR Laboratoire de Dynamique, Interaction et réac-
tivité (France)

LESIA Laboratoire d’Etudes Spatiales et d’Instrumen-
tation en Astrophysique (France)

LISA Laboratoire Inter-Universitaire des Systémes
Atmosphériques (France)

LITMS Laboratory for Information Technologies and
Mathematical Simulation (Russia)

LMD Laboratoire de Meétéorologie
(France)

Dynamique

MIPAS  Michelson Interferometer for Passive Atmo-
spheric Sounding
Metop  Meteorological operational satellite

MOPD  Maximum Optical Path Difference

NASA National Aeronautics and Space Administration
(USA)

NCAR National Center for Atmospheric research (USA)

NIR Near InfraRed

NRC National Research Center (Canada)

NIST National  Institute of Standards and
Technologies

OPAC Optical Properties of Aerosols and Clouds

PAH Polycyclic aromatic hydrocarbon

PAN PeroxyAcetyl Nitrate

PNNL Pacific Northwest National Laboratory (USA)

RTM Radiative Transfer Modeling

SCIAMACHY SCanning Imaging Absorption spectroMeter
for Atmospheric ChartograpHY

SCISAT-1 Scientific Satellite-1

SOPHIA Stratospheric Observatory for Infrared Astronomy

SPCAT  Spare Parts Catalog Software

S&MPO Spectroscopy & molecular properties of Ozone

SST Spitzer Space Telescope

UCL Université catholique de Louvain (Belgium)
ULB Université Libre de Bruxelles (Belgium)

uv Ultra Violet

VAMDC Virtual Atomic and Molecular Data Centre
VIMS Visible and Infrared Mapping Spectrometer
VIS Visible

Appendix B. Description of the format used for the line
parameters archive in the 2009 edition of GEISA (http://
ether.ipsl.jussieu.fr/etherTypo/?id=1306)

The GEISA-09 individual line list sub-database includes
31 spectroscopic line parameters corresponding to 252
characters record per entry, as described in Table 11:
spectroscopic parameters symbolic field names are in the
first line, and the associated field lengths and FORTRAN
format descriptors in lines 2 and 3, respectively. Standard
missing values, as adopted for each parameter and for the
whole database, are detailed in line 4. Those values are
mainly negative; blank characters correspond to missing
transition quantum number identifications and to internal
GEISA code as well; value “0” have been attributed to non
identified field L (HITRAN isotopologue number). The
description of each field is given at the bottom of the
table.

Some modifications have been brought to the GEISA-
03 [7-9] (http://ether.ipsl.jussieu.fr/etherTypo/?id=1072)
format, i.e.,

e Lengths of fields E1, E2, E3, E4, N, O, N', O’ have been
extended.

e Fields P and Q, related with specific HITRAN internal
information, have been suppressed. Field P, uncer-
tainty codes for wavenumber, intensity and half-
width, has been replaced in GEISA by effective
values of the errors. Field Q, HITRAN indices for lookup
of references for wavenumber, intensity and half-
width has no correspondence in GEISA which does
not include reference numbers among its line
parameters.

It has to be noticed that:

e Fields K and L are HITRAN-08 [13] specific, for the
users’ easier possible interface between the two data-
bases. These fields information content, i.e., molecule
number (K) and isotope number (L) as in HITRAN,
makes it possible to apply a biunivoque correspon-
dence with GEISA related fields (I) and (G), respec-
tively. It has to be noted that field (L) corresponds, in
HITRAN, to the isotopologue fractional abundance
code; in GEISA, field (G) represents the code associated
with the isotope chemical formula; these specificities
are handled in the software making it possible to
convert the format of a one of the database into the
one of the other.

e Value in field M is given only if directly provided by
the author of the spectroscopic line file. This field has
been newly appended in GEISA-09.

Detailed description of fields E1 and E2, specific of each
molecule, is given on the GEISA distribution WEB site at,
http://ether.ipsl.jussieu.fr, for database interactive soft-
ware use facilities. The shift of the positions of certain
already existing fields (such as field R), as consequence of
modifications in the format of GEISA-09 since the GEISA-03
one, has to be noted.
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Table 12
Complementary description of codes for new isotopologues or molecules
since former GEISA editions.

Molecule Molecule code Isotopologue code Formula
N0 4 458 14N14N180
548 15N14N180
556 ISNISNIGO
CH5D 23 312 13CH;D
HCN 224 D‘2C17‘9‘N
CH5Br 43 79 12CH; br
81 12015 br
CH5OH 44 216 12c12°0H
NO™* 45 46 14N160+
HNC 46 142 H“N'2C
CeHs 47 266 12C¢He
C,HD 48 122 12C,HD
CF,4 49 291 12C15E,
CH5CN 50 234 2cycieN

Appendix C. New molecules and isotopologues
in GEISA-09

Description of new molecule and isotopologue codes in
GEISA-09 is given in Table 12. The molecule names and
associated codes are in the two first columns; for each
molecule, the isotopologue codes and the corresponding
detailed formula are in columns 3 and 4, respectively.

Appendix D. Supplementary materials

Supplementary data associated with this article can
be found in the online version at doi:10.1016/j.jqsrt.2011.
06.004.
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