Atomes et molécules

Antoine JOLLY Enseignant - Chercheur au LISA P1 - 320

Université Paris Est Créteil, Créteil, France

2018-2019

Chapter 5 : Periodic properties of atoms

Chapter 5 – Index

1 – Atomic radius

2 – Formation of ions

2.1 Ionization energy2.2 Electronic affinity2.3 Electronegativity and Electro positivity2.4 Most probable ions

Chapter 5 – Atomic radius

1) Atomic radius

Covalent radius:

The covalent radius r_c of an atom A correspond to the half bond lengths in the molecules of the chemical compound (A-A)

$$r_{C} = d_{A-A} / 2$$

 $r_{c}(H) = d_{H-H} / 2 = 0.074$
 $d_{A-A} / 2 = 0.037 \text{ nm}$

Chapter 5 – Atomic radius

Variation of the covalent radius in the periodic table+

- In a given family (column), r_c increases when z increases $n \uparrow (\text{shell number} \uparrow)$
- For a given period (row), r_c diminishes when z increases. same n but $e^\uparrow \Leftrightarrow \text{protons}^\uparrow \Rightarrow \text{electrostatic attraction}^\uparrow$

2-1) **Ionisation energy**

 \mathbf{E}_1 is the necessary energy to remove an electron from the atom X.

$$X \rightarrow X^+ + e^-$$

Extraction of a second (or more) electron is also possible but the energy is more and more important. E_1 is larger when the attraction between the nucleus and the electron is stronger. E_1 is thus larger when the radius is smaller.

2-2) Electronic affinity (Ae)

$$X + e^{-} \rightarrow X^{-}$$

- The electron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion. For example, when a neutral chlorine atom in the gaseous form picks up an electron to form a Cl⁻ ion, it releases an energy of 349 kJ/mol. It is said to have an electron affinity of -349 kJ/mol and this large number indicates that it forms a stable negative ion. Small numbers indicate that a less stable negative ion is formed.
- Groups VIA (O, S) and VIIA (F, Cl) in the periodic table have the largest electron affinities.
- Alkali earth elements (Group IIA) and noble gases (Group VIIIA) do not form stable negative ions.

In general, the electron affinity A_e varies in the same direction as the ionisation energy E_1 . Atoms which have strongly bounded electrons (large ionization energy) are able to capture one or more extra electrons.

But there are some exceptions

2.3. Electronegativity - Electropositivity

Chemical reactivity depends on electron attractive properties of atoms.

- Electronegativity E_ corresponds to the tendency of an atom to attract an electron. It is high among non-metals
- Electropositivity E_+ corresponds to the tendency of an atom to loose an electron (low ionization energy). Conductive metals

While E_1 and A_e correspond to isolated atom properties, E- is important for the capacity of an atom to react chemically with other

atoms.

Definitions of electronegativity:

- <u>Mulliken</u>: based on E_1 et A_e : $E^- = \frac{1}{2} (E_1 + A_e)$
- <u>Pauling</u> : E⁻ (F) = 4 for Fluor, most electronegative element.

For other elements, the scale is relative to Fluor. The value of the least electronegative element is E^- (Cs) = 0,7 for Cesium.

н	Pauling Electronegativity Values									He							
2.1	rauning Electric Stregativity values																
Li 1.0	Ве 1.б											В 2.0	С 2.5	N 3.0	0 3.5	F 4.0	Ne
Na 0.9	Mg 1.3											Al 1.5	Si 1.9	Р 2.2	S 2.6	C1 3.0	Ar
К 0.8	Ca 1.0	Sc 1.4	Ti 1.5	V 1.6	Cr 1.7	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.8	Ge 2.0	As 2.2	Se 2.6	Br 2.8	Kr
Rb 0.8	Sr 0.9	Y 1.2	Zr 1.3	Nb 1.б	M o 2.2	Тс 1.9	Ru 2.2	Rh 2.3	Pd 2.2	Ag 1.9	Cd 1.7	In 1.8	Sn 2.0	Sb 2.1	Te 2.1	I 2.5	Xe

Consequences:

Most electronegative elements (tendency to become a negative ions) are good

oxidizers.

 $X + e^- \rightarrow X^-$ reduction reaction = gain of an electron

Most electropositive elements (tendency to become a positive ions) are good

reducers.

 $X \rightarrow X^+ + e^-$

oxidation reaction = electron loss

That is, the oxidant (oxidizing agent) electrons another removes from substance, and is thus itself reduced. Reduction And, because it "accepts" electrons, the Oxidant + e⁻ → Product oxidizing agent is also called an electron (Electrons gained; oxidation number decreases) acceptor. Oxygen is the quintessential oxidizer. Oxidation Electropositive elemental metals, such Reductant Product + e[−] as lithium, sodium, magnesium, iron, zi (Electrons lost; oxidation number increases) nc, and aluminium, are good reducing agents.

2-4) Most probables ions

Bloc s elements (ns¹ ou ns²): tendency to loose an electron

 Mg^{2+} 1s² 2s² 2p⁶ 3s⁰

($ns^2 np^1$): tendency to loose s and p electrons in order to empty the shell n = 3.

```
Exemple: Aluminium Al (Z=13)

_{13} Al _{1s^2} _{2s^2} _{2p^6} _{3s^2} _{3p^1}

Al ^{3+} _{1s^2} _{2s^2} _{2p^6}
```


Tendency to gain electrons in a way to saturate the p shell (= filled with 8 electrons).

Exemples : Fluorine (Z=9) becomes an ion F⁻

 $\mathbf{F} = \frac{1 \, \mathrm{s}^2 \, 2 \, \mathrm{s}^2 \, 2 \, \mathrm{p}^5}{1 \, \mathrm{s}^2 \, 2 \, \mathrm{s}^2 \, 2 \, \mathrm{p}^6}$

 $\int_{16}^{16} \frac{1 s^2 2 s^2 2 p^6 3 s^2 3 p^4}{s^{2-1} 1 s^2 2 s^2 2 p^6 3 s^2 3 p^6}$

Sulfur (Z=16) becomes an ion S²⁻

Bloc d elements (transition elements) :

Tendency to loose electrons first from s subshell with highest n value before eventually loosing electrons from (n-1)d subshell.

Chromium !!!!!:	Cr ³⁺ is an oligoelement essentiel for our metabolism.
	Cr ⁶⁺ is toxic

Conclusions:

• For s and p block elements :

Cations and anions adopt the electronic configuration of the closest rare gas.

• For d block elements :

Cations are formed and can take variable charges.

 ${\bf QCM}$ 06 : De quelle(s) sous-couche(s) est (sont) arrachés les électrons lorsqu'un atome de fer devient chargé « +3 » sous forme de ${\rm Fe}^{3+}$? Fe(Z=26)

- a. 3d seulement
- **b.** 3p seulement
- **c.** 4s et 3d
- **d.** 3s et 4d
- **e.** 4s et 3p

QCM 07 On considère les atomes suivants : Al (Z = 13), Si (Z = 14), P (Z = 15) et S (Z = 16). Quelle(s) proposition(s) est(sont) exacte(s) :

- a. Aucun de ces 4 atomes n'est un métal
- b. L'électronégativité de l'atome d'aluminium, Al, est plus grande que celle de l'atome de soufre, S
- c. L'énergie de première ionisation de l'atome de silicium, Si, est plus grande que celle de l'atome de phosphore, P
- d. L'affinité électronique de l'atome de silicium, Si est plus grande que celle de l'atome de phosphore, P
- e. Aucune des propositions précédentes (A à D) n'est exacte