Atomes et molécules

Antoine JOLLY
Enseignant - Chercheur au LISA P3-315

Université Paris Est Créteil, Créteil, France

2019-2020

Chapter 4 : Periodic classification of elements

.. To all of the elements for a happy birthday to Dmitri Mendeleev, whose 1869 version of the periodic table helped us order and understand our world.

Chapter 4 - Index

Introduction:

1 - Modern periodic classification - relation with electronic configuration 2 - Metals and nonmetals

La liste de Lavoisier. 1787

Suhstaness simples, salifiables, terreeses.

TABLEAU DES SUBSTANCES SIMPLES.

ОПЫТЂ СИСТЕМЫ ЭЛЕМЕНТОВЬ,
ОСНОВАННОЙ НА ИХЪ АТОМНОМЪ ВЪСЪ И ХИМИЧЕСКОМЪ СХОДСТВも

Mendeleev's 1869 periodic table: An experiment on a system of elements. Based on their atomic weights and chemical similarities.

Introduction

Le tableau périodique de Mendeleïev (1869)

Introduction

XIX century: by means of experimental Evolution de la découverte des éléments chimiques observations, chemists have tried to find analogies and relations among the chemical species (about 60 had been discovered up to that moment) with the aim of classifying and grouping them in 'families', based on their chemical properties.

The first classification was proposed by Mendeleev. It was based on increasing atomic mass (the laws dictating the electronic distribution around the nucleus, i.e., the electronic structure of atoms, was yet unknown)

Nowadays the elements are arranged by increasing atomic number, Z .

Avant 1700	1700-1799	1800-1849	1850-1899
Antimoine Argent Arsenic Carbone Cuivre Etain Fer Mercure Or Phosphore Plomb Soufre	Azote Béryllium Bismuth Chlore Chrome Cobalt Fluor Hydrogène Manganèse Molybdène Nickel Oxygène Platine Strontium Tellure Titane Tungstène Uranium Yttrium Zinc Zirconium (21)	Aluminium Baryum Bore Brome Cadmium Calcium Cérium Erbium Iode Lanthane Iridium Lithium Magnésium Niobium Osmium Palladium Potassium Rubidium Sélénium Silicium Sodium Tantale Thorium Vanadium (24)	Actinium Argon Cesium Dysprosium Gadolinium Gallium Germanium Hélium Holmium Indium Krypton Néodyme Néon Polonium Praséodyme Radium Rhodium Ruthénium Samarium Scandium Thallium Thulium Xénon Ytterbium (24)

A chemical element is a pure chemical substance consisting of one type of atom.

- 118 elements have been identified.
- 94 occur naturally on Earth.
- 24 are artificial.
- 80 of them are stable, while the others 38 are radioactive.

1 - Modern periodic classification - relation with electronic configuration

Periodic table:

Periodic Table of the Elements

Cerium	Praseodymium	$\mathbf{N d}^{60}{ }^{144.24}$ Neodymium		$62 \quad 150.40$	$\left.\right\|_{\text {Europium }} ^{63}$	64	$\underbrace{65}{ }^{65}$		Holmium			$7^{70} \mathbf{Y b}$ Ytterbium	$\left.\right\|_{\text {Lutetium }} ^{71} \boldsymbol{c c}^{174.97}$
$90 \quad 232.04$	$91 \quad 231.04$	$92 \quad 238.03$	$93 \quad 237.05$	$94 \quad$ (244)	$95 \quad(243)$	$96 \quad$ (247)	$97 \quad$ (247)	$98 \quad$ (251)	$99 \quad$ (252)	100 (257)	101 (260)	102 (259)	103 (262)
Th			\mathbb{N}°	DU	An	C⿵	品	G	ك®	Fn	$\mathbb{M} O$	$\mathbb{N} \bigcirc$	\square
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

1 - Modern periodic classification - relation with electronic configuration

Periodic table:Version 2017

1 - Modern periodic classification - relation with electronic configuration

Periodic Table of the Elements

Lanthanide series	Ce°	${ }^{\text {Pr }}$	Nd	Pm	Sm	Eu°	Gd	Tb	Dy	Ho	Erix	Tm	Yb°	Lu
Actinide series	Th'	$\mathrm{Pa}^{\text {" }}$	U"	$\mathrm{Np}^{\text {a }}$	Pu"	$\mathrm{Am}_{\text {mim }}$	Cm	Bk	Cf"	$\mathrm{Es}^{\prime \prime}$	Fm	Md	No	Lr

4 blocks of elements are determined according to the nature (S, p, d, f) of the layer being filled.

1 - Modern periodic classification - relation with electronic configuration

f-block

4 blocks of elements are determined according to the nature (s, p, d, f) of the layer being filled.

1 - Modern periodic classification - relation with electronic configuration

1 - Modern periodic classification - relation with electronic configuration

Cerium	$\begin{array}{cc} 59 & 140.91 \\ { }^{51} \end{array}$ Praseodymium	$\mathbf{C O}^{60} \mathbf{N d}$ Neodymium	61 (145) Promethium	Samarium	$\overbrace{}^{63}{ }^{151.96}$ Europium	$\left.\right\|_{\text {Gadolinium }} ^{64} \begin{array}{cc} 157.25 \\ \text { Sol } \end{array}$	65 158.93		67 164.93 Ho Holmium	$\underbrace{68 \boldsymbol{E}_{\boldsymbol{F}}^{167.26}}_{\text {Erbium }}$	$\begin{array}{cc} 69 & 168.93 \\ 7 ח \end{array}$ Thulium	$\left.\right\|^{70} \mathbf{Y b}^{173.04}$ Ytterbium	
$90 \quad 232.04$	$91 \quad 231.04$	$92 \quad 238.03$	$93 \quad 237.05$	$94 \quad$ (244)	$95 \quad(243)$	$96 \quad$ (247)	$97 \quad$ (247)	$98 \quad$ (251)	$99 \quad$ (252)	100 (257)	101 (260)	102 (259)	103 (262)
			\mathbb{N}_{Γ}	DU	$\square \square$	C⿵	B/R	G	乌9	Fn	$\mathbb{M} \mathrm{O}$	$\mathrm{N} \bigcirc$	\square
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

$\mathrm{Ce}_{\text {Cerium }}^{140.12}$	$\begin{array}{\|cc\|} \hline 59 & 140.91 \\ \text { Pr } \end{array}$ Praseodymium	$\mathbf{C l}^{60} \mathbf{N d}^{144,24}$ Neodymium	$61 \quad(145)$	$\begin{array}{\|cc} 6^{62} \\ \mathrm{Sm} \end{array}$	Europium				Holmium		Thulium	$\mathbf{Y b}^{70}{ }^{173.04}$ Ytterbium	Lutetium
$90 \quad 232.04$	$91 \quad 231.04$	$92 \quad 238.03$	$93 \quad 237.05$	$94 \quad$ (244)	$95 \quad(243)$	$96 \quad$ (247)	$97 \quad$ (247)	$98 \quad$ (251)	$99 \quad$ (252)	$100 \quad$ (257)	101 (260)	102 (259)	103 (262)
	$P \Omega$		N^{O}		此	Cn	吕)	G	ك®	Fn	NAO	NO	\square
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

1 - Modern periodic classification - relation with electronic configuration

The d block:

Periodic
Composed by elements with electronic structure of the

$$
\begin{array}{ll}
\text { Sc } z=21 & 1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{2}, 3 d^{1} \\
\operatorname{Ti} z=22 & 1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{2}, 3 d^{2}
\end{array}
$$

1 - Modern periodic classification - relation with electronic configuration

14 columns should be included between columns 3 and 4:
$\mathrm{Z}=58$ (Ce : Cerium) to $\mathrm{Z}=71$ (Lu : Lutetium) : lanthanides
$\mathrm{Z}=90$ (Th : Thorium) to $\mathrm{z}=103$ (Lawrencium) : actinides

1 - Modern periodic classification - relation with electronic configuration

Group \rightarrow \downarrow Period	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	$\begin{aligned} & 1 \\ & \hline \end{aligned}$																	2 He
2	3 	4 Be											B	6	7 N	8 0	F	10 Ne
3	$\begin{aligned} & \hline 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & \hline 12 \\ & \mathrm{Mg} \\ & \hline \end{aligned}$											$\begin{aligned} & 13 \\ & \mathrm{Al} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} \hline 15 \\ \mathrm{P} \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ \mathrm{~S} \end{gathered}$	$\begin{gathered} \hline 17 \\ \mathrm{Cl} \end{gathered}$	18 Ar
4	$\begin{gathered} 19 \\ \mathrm{~K} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & \hline 21 \\ & \mathrm{Sc} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22 \\ & \mathrm{Ti} \\ & \hline \end{aligned}$	$\begin{gathered} 23 \\ \mathrm{~V} \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & \hline 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \text { Co } \end{aligned}$	$\begin{aligned} & \hline 28 \\ & \mathrm{Ni} \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & \hline 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & \hline 33 \\ & \text { As } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & \hline 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & \hline 36 \\ & \mathrm{Kr} \end{aligned}$
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \hline 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} 39 \\ Y \end{gathered}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & \hline 42 \\ & \text { Mo } \end{aligned}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{aligned} & \hline 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{aligned} & \hline 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & \hline 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & \hline 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & \hline 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ 1 \end{gathered}$	$\begin{aligned} & 54 \\ & \mathrm{Xe} \end{aligned}$
6	$\begin{aligned} & \hline 55 \\ & \mathrm{Cs} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 56 \\ & \mathrm{Ba} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & \hline 73 \\ & \mathrm{Ta} \\ & \hline \end{aligned}$	74	$\begin{aligned} & \hline 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & \hline 76 \\ & \text { Os } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \text { Ir } \end{aligned}$	$\begin{aligned} & \hline 78 \\ & \mathrm{Pt} \end{aligned}$	$\begin{array}{r} \hline 79 \\ \mathrm{Au} \\ \hline \end{array}$	$\begin{aligned} & \hline 80 \\ & \mathrm{Hg} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 81 \\ & \mathrm{TI} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & \hline 83 \\ & \mathrm{Bi} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 84 \\ & \text { Po } \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	$\begin{aligned} & \hline 86 \\ & \mathrm{Rn} \end{aligned}$
7	$\begin{aligned} & \hline 87 \\ & \mathrm{Fr} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 88 \\ & \mathrm{Ra} \end{aligned}$		$\begin{gathered} 104 \\ \mathrm{Rf} \end{gathered}$	$\begin{gathered} 105 \\ \mathrm{Db} \end{gathered}$	$\begin{array}{\|c} \hline 106 \\ \mathrm{Sg} \\ \hline \end{array}$	$\begin{gathered} \hline 107 \\ \mathrm{Bh} \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \end{gathered}$	$\begin{gathered} 109 \\ \mathrm{Mt} \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \end{gathered}$	$\begin{array}{\|c} \hline 111 \\ \mathrm{Rg} \\ \hline \end{array}$	$\begin{gathered} \hline 112 \\ \mathrm{Cn} \end{gathered}$	$\begin{aligned} & \hline 113 \\ & \text { Uut } \end{aligned}$	$\begin{array}{\|c\|} \hline \hline 114 \\ \mathrm{FI} \\ \hline \end{array}$	$\begin{aligned} & \hline 115 \\ & \text { Uup } \end{aligned}$	$\begin{gathered} 116 \\ \mathrm{Lv} \end{gathered}$	$\begin{array}{\|l} \hline \hline 117 \\ \text { Uus } \end{array}$	$\begin{aligned} & \hline 118 \\ & \text { Uuo } \end{aligned}$

Lanthanides
Actinides

57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 $5 m$	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

1 - Modern periodic classification - relation with electronic configuration

Lanthanum, ${ }_{57} \mathrm{La}$		Cerium, ${ }_{58} \mathrm{Ce}$		
General properties		General properties		
		Pronunciation /sieriom/ Appearance silvery white Standard atomic $140.116(1)^{[1]}$ weight $\left(A_{r}\right)$		
Pronunciation Appearance Standard atomic weight $\left(A_{r}\right)$	/ lænӨənəm/			
	$138.90547(7)^{[1]}$	Cerium in the periodic table		
Lanthanum in the periodic table				-Ce$\substack{\text { Th }}$
			cerium \rightarrow praseodymium	
Atomic number (Z)		Atomic number (Z) 58		
Group, period Block Element category	group 3, period 6	Group, period	group n/a, period 6	
	d-block		f-block	
	\square lanthanide, sometimes considered a transition metal	Element category	\square lanthanide	
Electron configuration	[Xe] $5 d^{1} 6 s^{2}$	Electron configuration Electrons per shell	[Xe] $4 f^{1} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2[2]}$	
Electrons per shell	2, 8, 18, 18, 9, 2		2, 8, 18, 19, 9, 2	

1 - Modern periodic classification - relation with electronic configuration

Why 15 lanthanide elements?
Exception to the rule 5 d and 4 f subshells are very close in energy

$\begin{aligned} & \frac{\text { Chemic }}{\text { al }} \\ & \text { element } \end{aligned}$	La	$\underline{\mathrm{Ce}}$	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	$\underline{Y b}$	Lu
Atomic number	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Atomic electron configur ation*	$5 d^{1}$	$4 \mathbf{f l}^{15} \mathbf{d}^{\mathbf{1}}$	$4 f^{3}$	$4 \mathbf{4}^{4}$	45^{5}	$4 \mathbf{f}^{6}$	4f7	$4 f^{7} 5{ }^{1}$	$4 f^{9}$	$4 \mathrm{f}^{10}$	$4 \mathbf{f 1 1}^{11}$	$4 \mathbf{f}^{\mathbf{1 2}}$	$4 f^{13}$	$4 \mathbf{f}^{14}$	$4 f^{14} 5 d^{1}$

2 - Metals and nonmetals

Periodic Table of the Elements

Metals

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	L
Th	Pa	U	\mathbb{N}	Pu	Am	cm	Bk	C^{3}	Es	Fmo	W@	No	

They occupy the center and left wing (except for the H) of the periodic classification
_ They are in general solids (NCTP, except Hg)
_ Conductors
_ Cation donors

Periodic Table of the Elements

Nonmetals

_ They occupy the upper right part of the periodic classification (except for the noble gases)
_ Solid or gas in NCPT (except Br)

- Non-conductors
_ Anion donors

Is ' X ' a metal or a nonmetal

Sanderson's rule:

An element is a METAL if the number of electrons (a) in the highest layer is $<=$ to the period number (n)

Examples

Al
$\mathrm{a}=3$ (3 e- in the layer $\mathrm{n}=3$)
$\mathrm{n}=3$ ($3^{\text {rd }}$ period)
$\mathrm{a}=\mathrm{n}$
It is a metal!

ELEMENTS OF A SMARTPHONE

ELEMENTS COLOUR KEY: ALKALI METAL ALKALINE EARTH METAL TRANSITION METAL GROUP 13 GROUP 14 GROUP 15 GROUP 16 HALOGEN O LANTHANIDE

SCREENO

$\underset{\text { Indium }}{49}$	8
$\begin{aligned} & \mathrm{S}_{\mathrm{in}}^{50} \end{aligned}$	oxygen
Al^{13}	$\underset{\text { silicon }}{\text { Si }}$
$\stackrel{8}{0}_{0}^{8}$ Oxygen	$\stackrel{19}{\mathrm{~K}}$ Potassium

$\underset{\text { vtrium }}{\stackrel{39}{\mathrm{Y}}}$	$\underset{\text { Lanthanum }}{57}$	Tb Terbium

Indium tin oxide is a mixture of indium oxide and tin oxide, used in a transparent film in the screen that conducts electricity. This allows the screen to function as a touch screen.

The glass used on the majority of smartphones is an aluminosilicate glass, composed of a mix of alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ and silica $\left(\mathrm{SiO}_{2}\right)$. This glass also contains potassium ions, which help to strengthen it.

A variety of Rare Earth Element compounds are used in small quantities to produce the colours in the smartphone's screen. Some compounds are also used to reduce UV light penetration into the phone.

BATTERY O

> The majority of phones use lithium ion batteries, which are composed of lithium cobalt oxide as a positive electrode and graphite (carbon) as the negative electrode. Some batteries use other metals, such as manganese, in place of cobalt. The battery's casing is made of aluminium.

Magnesium compounds are alloyed to make some phone cases, whilst many are made of plastics. Plastics will also include flame retardant compounds, some of which contain bromine, whilst nickel can be included to reduce electromagnetic interference.

OELECTRONICS
Copper is used for wiring in the phone, whilst copper, gold and silver are the major metals from which microelectrical components are fashioned. Tantalum is the major component of micro-capacitors.

Nickel is used in the microphone as well as for other electrical connections. Alloys as for other electrical connections. Alloys
including the elements praseodymium, including the elements praseodymium, gadolinium and neodymium are used
in the magnets in the speaker and microphone. Neodymium, terbium and dysprosium are used in the vibration unit.

Pure silicon is used to manufacture the chip in the phone. It is oxidised to produce non-conducting regions, then other elements are added in order to allow the chip to conduct electricity

Tin \& lead are used to solder electronics in the phone. Newer leadfree solders use a mix of tin, copper and silver.

$\frac{82}{82}$ O CASING

[^0]
[^0]: © COMPOUND INTEREST 2014 - WwW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

