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Chapter 10 : The atom in the 
wave model



I) The electron in wave mechanics

See Chapter 2 : Evolution of models of the atom



I-1) Introduction to wave mechanics

a/ Wave-particle duality

Light can be described as :

• a wave (characterized by its wavelength) 

• a set of particles, photons with energy :

n is the frequency and l is the wavelength
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Duality applies also to the electrons - And to all other

particles with linear momentum p (p = Mass x Speed), a wavelength l is

associated (Louis de Broglie,1924)

Wavelength

Linear momentum

Wave:

Quantum Wave Mechanic

Particle:

Classic mechanic 
description

l =           =  
h           h

p          mv

The standing wave condition:

circumference = whole number of

wavelengths.

nl = 2p r,  n=1, 2, 3,…

The angular momentum:

L = mvr = pr

= hr/l = nh/2p  nħ



b) Heisenberg inequality (or uncertainty principle) :

1927: Werner Heisenberg  The momentum and position

of a particle cannot be known simultaneously

For any particle :

Dx Dp > h / 2p

Dx : uncertainty on the position

Dp : uncertainty on the momentum (speed):

• The position and momentum of a particle cannot be

simultaneously measured with arbitrarily high precision. There is

a minimum for the product of the uncertainties of these two

measurements. There is likewise a minimum for the product of

the uncertainties of the energy and lifetime.



I-2) The wave function

a) Definition

• In wave mechanics, the electron is not described as

a particle with a mass and a mechanical trajectory

but as a wave.

• The electromagnetic wave associated to the

electron is a stationary wave. Its amplitude at each

point in space is time independent. This amplitude

is given by a mathematical function:

the wave function written   (x,y,z),
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• Ψ(x,y,z) can be positive, negative, complex

• Ψ has no physical meaning but Ψ2 has!

• Ψ must be finite, single-valued, continuous and vanish

at infinity and Ψ2 represents the probability density of

finding the electron in a particular position in space.

• The probability dP of finding the electron in an 

infinitesimal volume dV centered at some point in space 

(x,y,z) is given by:

dP = | Ψ2 | dV
• There is a normalization condition: the probability of 

finding the electron somewhere in space should be one:

space 2 dV = 1



• Wave functions  are not determined experimentaly but

can be calculated as solutions to a differential equation

called :

The Schrödinger equation:

2 2 2 8p2m
+ + =+ (Et – Ep) 0

x2 y2 z2
h2

2 2 2
+ +

x2 y2 z2
= D

Et = total energy of the electron; Ep = potentiel energy applied to the electron

m =  mass of the electron ; h = Planck constant

D : Laplace operator

D  8p2m

h2
(Et – Ep) = 0

b) The Schrödinger equation



II) Solutions to the Schrödinger equation

D  8p2m

h2
(Et – Ep) = 0

• Solutions are functions  veryfying the equation in all

points in space. The equation can be solved only for

certain values of Et : the quantum energy values that have

been established experimentally (same values as the Bohr

model).
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• The Schrödinger equation can be solved analytically:

solutions of  are possible for particular values of the

energy E.

• The wave functions , solutions to the Schrödinger

equation, must satisfy a number of conditions

(continuous, finite in space and normalised)

II-1) Case of hydrogen-like atoms 
Only one é- :           H   (1 p, 1 é-);  

He+ (2 p, 1 é-); 

Li++ (3 p, 1 é-); 

• The only electron is in a central force field applied by

the protons



Solutions to the Schrödinger equation are quantified, three

numbers need to be introduced :

the quantum numbers n, ℓ et m. 

One set of n, ℓ and m defines the total energy and the

wavefunction of the electron.

n, ℓ, m defines

Et 
≡ energy of the electron

≡ Quantum box

Wave function of the electron

2 : probability to find the electron, 

information on 

the spatial distribution of the é:

The orbital is the 

representation of this spatial 

distribution



Atomic orbitals

The ORBITAL associated to {n,ℓ,m} defines the

probability to find the electron and is described by the

wave function nℓm.

ORBITALS are equivalent to the quantum boxes.

They have the same name:

*Orbitals 1s, 2s              {1,0,0}, {2,0,0}

*Orbitals 2p,3p           {2,1,0}          {2,1,-1}         {2,1,+1}

{3,1,0},……..



Shape of the orbitals

• ℓ characterizes the shape and the symmetry of

the orbitals.

• m characterizes the orientation of the orbitals

in the reference system (x, y, z) of the nuclei.

• Orbitals characterized by ℓ=0 s orbitals

Spherical symmetry



• Orbitals characterized by ℓ=1 p orbitals

They are two-lobed shaped and oriented along coordinate x,y or z 

depending on the value of m. 
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x

• Orbitals  characterized by ℓ=2            d orbitals.



• Energy levels

In the case of hydrogen-like atoms, it can be shown that each

value of n (each value of En) corresponds to n2 orbitals with

the same energy (because of ℓ and m)

This is called the degeneracy of the energy level.



• Consequence in the case of the H atom:

Et = -
e4 m

8e0 h
22

1

n2

The sub shells (defined by ℓ) and the sub levels (defined by m) 

belonging to the same shell (defined by n) have the same energy: 

they are degenerated.

All orbitals with the same n have the same energy

The electron in the H atom can take different energies depending 

only on the principal quantum number n

orbitals

possible energy (quantum cell)  

n

= -
13.6 eV

2n



II-2) Case of many-electron atoms

• The atom is not a central force field system anymore. In addition to the

nuclei/e- attraction, repulsion between electrons appear.

• The full resolution of the Schrödinger equation is no longer possible.

Approximations need to be done.

• It can be shown that the energy of a given electron of the atom now

depends on both quantum numbers : n and ℓ (but not m)



When belonging to the same subshell (same ℓ) sublevels 

with different m still have the same energy

(they are degenerated)

orbitals        

Possible energy (quantum cell)  

{n, ℓ}

All orbitals with same {n, ℓ} have the same energy

The orbitals belonging to the same shell (same n)  no longer  

have the same energy. It depends on ℓ:

E 3s < E 3p < E 3d



Hydrogen-like atoms such as lithium and sodium might be expected to exhibit similar

energy levels. They consist of closed shells with a single electron outside. Envisioning a

Bohr-type shell structure with just a single electron in the outer shell, the net charge

inside that shell is just one net positive charge. This leads to the following expectation:

However, when data from spectra are used to build energy level diagrams for these

atoms, a strong orbital dependence of the energy is found for the electrons of low

angular momentum as shown below.



• Origin of Orbital Quantum Number Dependence of Electron 

Energies

When the wavefunctions for electrons with different orbital quantum numbers are

examined, it is found that there is a different amount of penetration into the region

occupied by the 1s electrons. This penetration of the shielding 1s electrons exposes

them to more of the influence of the nucleus and causes them to be more tightly bound,

lowering their associated energy states.

In the case of lithium, the 2s electron shows more penetration inside the

first Bohr radius and is therefore lower than the 2p. In the case

of sodium with two filled shells, the 3s electron penetrates the inner

shielding shells more than the 3p and is significantly lower in energy.


