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I) The electron in wave mechanics

See Chapter 2 : Evolution of models of the atom




I-1) Introduction to wave mechanics

a/ Wave-particle duality

Light can be described as :

e a wave (characterized by its wavelength)

* a set of particles, photons with energy :
v 1s the frequency and A 1s the wavelength
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Duality applies also to the electrons -

And to all other

particles with linear momentum p (p = Mass x Speed), a wavelength A 1s

associated (Louis de Broglie, 1924)
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Quantum Wave Mechanic

For a hydrogen atom:

Electron wave resonance
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a, = 0.0529nm = Bohr radius
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Classic mechanic
description

The standing wave condition:
circumference = whole number of
wavelengths.

nA=2xr, n=I1, 2, 3,...
The angular momentum:
L =mvr = pr
= hr/A=nh/27x =nh




b) Heisenberg inequality (or uncertainty principle) :

1927: Werner Heisenberg = The momentum and position
of a particle cannot be known simultaneously

- For any particle :
AxAp>h/2n
AX : uncertainty on the position
_Ap : uncertainty on the momentum (speed):

« The position and momentum of a particle cannot be
simultaneously measured with arbitrarily high precision. There 1s
a minimum for the product of the uncertainties of these two
measurements. There 1s likewise a minimum for the product of
the uncertainties of the energy and lifetime.



I-2) The wave function

a) Definition

* In wave mechanics, the electron 1s not described as
a particle with a mass and a mechanical trajectory
but as a wave.

 The celectromagnetic wave associated to the
electron 1s a stationary wave. Its amplitude at each
point 1n space 1s time independent. This amplitude
1s given by a mathematical function:
the wave function written W (X,y,z),




* Y(X,y,z) can be positive, negative, complex

« ¥ has no physical meaning but ¥ has!

* Y must be finite, single-valued, continuous and vanish
at infinity and W2 represents the probability density of
finding the electron 1n a particular position 1n space.
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* The probability dP of finding the electron in an
infinitesimal volume dV centered at some point in space
(X,y,Z) 1s given by:

dP=|¥?|dV
e There 1s a normalization condition: the probability of
finding the electron somewhere 1n space should be one:
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b) The Schrodinger equation

 Wave functions y are not determined experimentaly but
can be calculated as solutions to a differential equation

called :
The Schrodinger equation:
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E, = total energy of the electron; E, = potentiel energy applied to the electron
m = mass of the electron ; h = Planck constant

O? 52 62 :
= A A : Laplace operator
Ox? Sy 822

M+?WEEWO




Chapter 10 : The atom in the wave model

IT) Solutions to the Schrodinger equation

AY + Sl’fim (E,—E)¥ =0

* Solutions are functions y verytying the equation in all
points in space. The equation can be solved only for
certain values of E, : the quantum energy values that have
been established experimentally (same values as the Bohr
model).



IT-1) Case of hydrogen-like atoms
Only one é- : H (1p,]1¢-);

He* (2 p, 1 é-);

Li** (3 p, 1 é-);

 The only electron 1s 1n a central force field applied by
the protons

 The Schrodinger equation can be solved analytically:
solutions of y are possible for particular values of the
energy E.

 The wave functions vy, solutions to the Schrodinger
equation, must satisfy a number of conditions
(continuous, finite in space and normalised)



Solutions to the Schrodinger equation are quantified, three
numbers need to be introduced :

the quantum numbers n, £ et m.

One set of n, £ and m defines the total energy and the

wavefunction of the electron.
{n, £, m} defines

E, y
= energy of the electron =Wave function of the electron

=\’ : probability to find the electron,
information on
= Quantum box the spatial distribution of the é:

The orbital is the
representation of this spatial
distribution




Atomic orbitals
The ORBITAL associated to {n,{,m} defines the

probability to find the electron and is described by the

wave function ...

ORBITALS are equivalent to the quantum boxes.
They have the same name:

*Orbitals 1s, 2s $1,0,0}, {2,0,0}

*Orbitals 2p,3p {2,1,0} {2,1,-1} {2,1,+1}



Shape of the orbitals

[ characterizes the shape and the symmetry of
the orbitals.

 m characterizes the orientation of the orbitals

in the reference system (X, y, z) of the nuclei.

«  Orbitals characterized by {=0 = S orbitals
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Spherical symmetry
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« Orbitals characterized by (=1 = p orbitals

They are two-lobed shaped and oriented along coordinate x,y or z

depending on the value of m.
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o Orbitals characterized by {=2 <= d orbitals.

Orbitale dxy Ol;bitale dxz z Orbitale dyz
F
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Energy levels

In the case of hydrogen-like atoms, it can be shown that each

value of n (each value of E ) corresponds to n? orbitals with

the same energy (because of £ and m)

This 1s called the degeneracy of the energy level.
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* Consequence in the case of the H atom:

orbitals

| §
possible energy (quantum cell)

0]

The electron in the H atom can take different energies depending
only on the principal quantum number n

po_ em 1 _ 136eV

b 8 o
The sub shells (defined by {) and the sub levels (defined by m)
belonging to the same shell (defined by n) have the same energy:

they are degenerated.

All orbitals with the same » have the same energy




I1I-2) Case of many-electron atoms

The atom 1s not a central force field system anymore. In addition to the
nuclei/e- attraction, repulsion between electrons appear.

The full resolution of the Schrodinger equation 1s no longer possible.
Approximations need to be done.

[t can be shown that the energy of a given electron of the atom now
depends on both quantum numbers : n and £ (but not m)
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orbitals

Possible energy (quantum cell)

n,

The orbitals belonging to the same shell (same n) no longer
have the same energy. It depends on £:

E3S<E3p<E3d

When belonging to the same subshell (same {) sublevels
with different m still have the same energy
(they are degenerated)

All orbitals with same {n, {} have the same energy




Hydrogen-like atoms such as lithium and sodium might be expected to exhibit similar
energy levels. They consist of closed shells with a single electron outside. Envisioning a
Bohr-type shell structure with just a single electron in the outer shell, the net charge
inside that shell is just one net positive charge. This leads to the following expectation:
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However, when data from spectra are used to build energy level diagrams for these
atoms, a strong orbital dependence of the energy is found for the electrons of low

angular momentum as shown below.
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* Origin of Orbital Quantum Number Dependence of Electron

Energies
When the wavefunctions for electrons with different orbital quantum numbers are
examined, it 1s found that there 1s a different amount of penetration into the region
occupied by the 1s electrons. This penetration of the shielding Is electrons exposes
them to more of the influence of the nucleus and causes them to be more tightly bound,

lowering their associated energy states.

1s

15 panetration of the 1s
shielding by the 2s
and 2p electrons in
lithium significantly
lowers those levels.

2p

Penetration of the 1s
shielding by the 3s
and 3p electrons in
sodium significantly
lowers those levels.

Electron probability
Electron probability

ag S5a, 10a, Ag Sag 10a,

In the case of lithium, the 2s electron shows more penetration inside the
first Bohr radius and 1s therefore lower than the 2p. In the case
of sodium with two filled shells, the 3s electron penetrates the inner
shielding shells more than the 3p and 1s significantly lower in energy.



