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The aimof this study is to analyze the suitability of remotely-sensed aerosol retrievals to progress in the understand-
ing of the influence of desert dust on health, and particularly on meningitis epidemics. In the Sahel, meningitis
epidemics are a serious public health issue. Social factors are of prime importance in the dynamics of the epidemics,
however climate and environmental factors are also suspected to play an important role.
This study focuses on three Sahelian countries (Burkina Faso, Mali and Niger) which are among themost concerned
in the “meningitis belt” and affected by strong dust events every year. It investigates the capability of the aerosol
index (AI) derived from OMI (ozone monitoring instrument) to represent the aerosol optical thickness (AOT) and
the aerosol surface concentration (particulate matter b10 μm; PM10) at different time-steps. The comparison of
the OMI-AI with ground-based measurements of AOT shows a good agreement at a daily time-step (R≈0.7). The
correlation between OMI-AI and PM10 measurements is lower (R≈0.3) but it increases at a weekly time-step
(R≈0.5). The difference in the level of correlation between the AOT and the PM10 is partly related to changes in
the altitude of the dust layers, especially from April to June, the period of transition from the dry to the wet season.
A temporal shift is observed in the occurrence of themaximumof PM10 concentration (March), of AOT (April) and of
OMI-AI (June). Nevertheless, during the core of the dry season (January to March) when dust is transported at low
altitude, the OMI-AI is able to correctly detect the dust events and to reproduce the dust variability at the regional
scale.
For dust impact studies on health, only the surface level is relevant. Thus, we conclude that the OMI-AI is suit-
able especially at a weekly time-step from January to March. In particular for meningitis impact studies, it
appears as suitable from the onset to the maximum of the epidemics. A preliminary investigation of the
link between the OMI-AI and the WHO weekly national epidemiological reports reveals a 1-week time-lag
between the occurrence of dust and meningitis during the increasing phase of the disease.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The largest sources of mineral aerosols of the world have been
proved to be located in the Sahara (Goudie & Middleton, 2001). Both
models and observations show that Saharan dust yield over 40% of the
global aerosol production from natural sources (Laurent et al., 2008;
Ramanathan et al., 2001; Zender & Kwon, 2005). Mineral dust impacts
the climate, through direct and indirect radiative forcing (Sokolik
et al., 2001). The impact on human health has been demonstrated
in several places far away from the Sahara (De Longueville et al., 2009),
for instance with the daily mortality in Spain (Perez et al., 2008) or with
asthma attacks in the Caribbean islands (Gyan et al., 2005; Prospero et
de Bourgogne, Biogéosciences/
riel, Bâtiment Sciences Gabriel,
80 39 57 41.
. Deroubaix).

rights reserved.
al., 2008). Although the European or American air quality standards for
particulatematter smaller than10 μm(PM10) concentration are currently
widely exceeded in the Sahel (Marticorena et al., 2010; De Longueville et
al. (2010) deplores the lack of mineral dust impact studies on health in
this area due to the lack of air quality monitoring stations.

In West Africa, the meningococcal meningitis (bacteria: Neisseria
meningitidis, serogroups: A, C, W135 and X) outbreaks are a major
public health problem and the serogroup A is responsible for 85% of
the cases (Campagne et al., 1999). For instance 200,000 cases have
been recorded (Greenwood, 1999) in 1996 throughout the “Meningitis
Belt” defined by Lapeyssonnie in 1963. About 300 million people live in
this area, which extends from Senegal to Ethiopia on a 10–15° North
latitudinal band. According to the World Health Organization (WHO),
10 to 20% of the cases are lethal and 10 to 20% of the survivors present
neurological sequels. Social factors like number of people per house,
exposure to smoke, immunity and population dynamics are critical to
understand the spread of the bacteria. The major dust outbreaks occur
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during the winter dry season (December to April) dominated by warm
and dry dust-laden winds coming from the North (Harmattan winds).
Up to recently the influence of mineral dust on meningitis epidemics
had been only suggested, with several possible mechanisms of interac-
tions not fully understood (Thomson et al., 2006, 2009), as discussed in
Section 3.3.

Recent studies achieved in the frame of the AMMA (African Monsoon
Multidisciplinary Analyses) program strengthen the hypothesis of a sig-
nificant impact of high dust load onmeningitis epidemics in the Sahelian
countries (Martiny & Chiapello, in press). Given the lack of ground-based
dust measurements in this region, important progress would bemade by
using dust remote sensing products to investigate the role of the dust on
meningitis epidemics. The use of long time series of aerosol products is re-
quired and quantitative products of aerosol optical thickness (AOT) are
retrieved over continental surfaces from now on. AOT derived from
MODIS (MODerate Imaging Spectro-radiometer) using the so-called
“deep blue” algorithm (Hsu et al., 2004) has been calculated
retrospectively for the period (1999–2010) but has not been deeply
tested and validated over the North of Africa. AOT retrievals are also
available from the multi-angle imaging spectroradiometer (MISR) and
have been tested over desert sites (Martonchik et al., 2004).While several
authors recognized the quality of theMISR AOT, their use for climatologic
studies is limited by a poor spatial sampling (Christopher et al., 2008). The
intercomparison of the most recent AOT products over land reveals large
differences attributed to differences in the sensors and especially in the
retrieval algorithms (Carboni et al., 2012).

Two semi-quantitative aerosol products, used for mineral dust cli-
matology, are available for a longer period over the North of Africa.
The infrared difference dust index (IDDI) is derived from the Meteosat
radiances at the top of the atmosphere in the thermal infrared
(10.5–12.5 μm) by Legrand et al. (1989). The IDDI is available at a 1°
spatial resolution over Africa but only for the period 1984–1993
(Legrand et al., 2001). The AI (absorption aerosol index) product
(Herman et al., 1997; Torres et al., 1998) is derived from radiances
in the UV (at two wavelengths 354 nm and 388 nm). The AI algo-
rithm was first applied to data from the TOMS (total ozone map-
ping spectrometer) sensors on Nimbus (1978–1993) and Earth-Probe
(1996–2005) missions. Since 2004 the successor of TOMS, the OMI
(ozone monitoring instrument) provides an AI product at a 0.25° spatial
resolution. The perspective to link the TOMS-AI and the OMI-AI offers a
chance to create the longest time-series relevant for the dust in desert
areas. Indeed, the AI has been proved to be highly performing over con-
tinental surfaces like desert or semi-arid environments because the re-
flectivity of these surfaces in UV is low (Eck et al., 1987; Herman &
Celarier, 1997). Like most of the satellite aerosol retrievals, the TOMS
and OMI AI products have been validated by comparison to the NASA
Aerosol Robotic Network (AERONET) sun photometer aerosol optical
thickness (AOT) (Holben et al., 1998) at a global scale (Hsu et al., 1999;
Torres et al., 2002, 2007). The AI has beenwidely used in the geophysical
fields, for instance to characterize the dust sources over the Sahara
(Engelstaedter et al., 2006; Prospero et al., 2002; Washington et al.,
2003). Decadal trend studies of the dust transport over theNorthAtlantic
have been achieved (Chiapello & Moulin, 2002; Chiapello et al., 2005)
and the ability of TOMS-AI to detect the Saharan events has been demon-
strated in comparison with PM10 measurements at four remote places
(Chiapello et al., 1999). Despite the sensitivity of the AI to the aerosol
plume height, the AI is able to represent the dust features at the ground
level as detecting dust event over continent and ocean (Chiapello et al.,
1999; Ginoux & Torres, 2003). Recently, the OMI-AI has been used to
improve the AOT retrieval from MODIS (Satheesh et al., 2009) or MISR
in the North of Africa (Christopher et al., 2008). The TOMS-AI has already
been used for meningitis impact studies in West Africa (Molesworth et
al., 2003; Thomson et al., 2006). Among a set of societal, climate and en-
vironment variables, these studies conclude that dust is one of the most
important risk factors for meningitis. Nonetheless the authors recom-
mend to examine the ability of satellite proxies to represent the dust
concentrations at the ground level. The main motivation of this work is
thus to evaluate the suitability of OMI-AI for health impact studies in
West Africa and more specifically its capability to represent the surface
concentration at the period of the meningitis epidemics in the Sahel.

This analysis focuses on Burkina Faso, Mali and Niger, which are
among the most affected countries in the meningitis belt (Molesworth
et al., 2002) and markedly affected by strong dust events every year
(Morales, 1986; N'Tchayi et al., 1994). During the dry season from
October to April, the Harmattan wind blows over the Sahel carrying
mineral aerosols in the boundary layer (Léon et al., 2009). High aerosol
concentrations at the surface are recorded every year during the core of
the dry season (defined as January to March) due to transport at the
continental scale (Marticorena et al., 2010). Our strategy is to examine,
at different time-steps and periods of the year, coincident measure-
ments of dust concentration recorded at the ground level which can
be related to population exposure rates, ground based AOT data, and
theOMI-AI retrievals. The OMI-AI, the AOT and the PM10 are three inde-
pendent measurements that all document the atmospheric aerosol
load. The OMI-AI is a semi-quantitative parameter which has been
shown to depend on the AOT that quantifies the extinction of visible
radiation proportional to the vertically integrated aerosol atmospheric
content. The PM10 surface concentration is linked, to some extent, to
the column concentration. But its representativity depends on the
altitude and homogeneity of the dust layers. Two major questions are
addressed in this study: (i) At which time-step are the OMI-AI, AOT
and PM10 in the best agreement in typical Sahelian sites? (ii) During
which period is the OMI-AI able to reproduce the variability of the
dust surface concentration? Section 2 describes the data sets and the
methodology. Section 3 presents the OMI-AI compared to the AOT
data sets from AERONET (Section 3.1) and to PM10 measurements
(Section 3.2), and ends by a preliminary analysis on meningitis epi-
demics at the national level (Section 3.3). The results are discussed
and the conclusions are given in Section 4.

2. Data and methods

2.1. Aerosol index from the OMI satellite sensor

The OMI sensor is onboard the Aura spacecraft of the NASA Earth Ob-
serving System in theA-train. The equator crossing time of the “Afternoon
train” is 13:45 (Levelt et al., 2006). Global daily level 3 (average covering
the whole globe from 14 single orbits acquired each day) AI products are
available since October 2004 at a spatial resolution of 13∗24 km at nadir.
The AI product is the spectral contrast of the effective radiance with
aerosol effects and calculated radiance in the UV based on the radiative
transfer theory and given a pure molecular atmosphere (i.e., Rayleigh
particles for which the diameter is largely inferior to the wavelength of
the incident signal). The AI has first been defined for TOMS radiances at
340 and 380 nm by Torres et al. (1998) and modified for OMI using
the radiances at 354 and 388 nm by Torres et al. (2007) following:

AI ¼ −100 log10 I354obs=I354calc
� �

ð1Þ

where I354obs is the effective radiance observed at the top of the atmo-
sphere and I354calc is the radiance estimated from I388. AI positive values
are associated with absorbing aerosols in the UV, mainly from mineral
and volcanic aerosols as well as biomass burning, and negative values
are associated with non-absorbing aerosols like sea salt particles.

Fig. 1 presents the 2005–2008 averaged AI from OMI in Africa North
of the equator. In the Sahara, the OMI-AI reaches as high as those values
previously obtainedwith TOMS-AI for the same locations (Engelstaedter
& Washington, 2007a; Goudie & Middleton, 2001; Prospero et al., 2002;
Washington et al., 2003). The region of the Bodélé depression in Chad
recognized as the most active dust source (Engelstaedter et al., 2006;
Washington et al., 2006) experiences the highest values (≈3.5)whereas



Fig. 1. West Africa long-term mean OMI-AI (at 0.25∗0.25°) averaged over 4 entire years (2005 to 2008). AERONET/PHOTONS Cinzana (Mali), Agoufou (Mali), Ouagadougou
(Burkina Faso), Banizoumbou (Niger) used in this study are reported. Square indicates sites providing TEOM PM10 used in this study. The meningitis belt is indicated in red.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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more moderate values (≈2.5) are recorded for sources along the border
between Mali and Mauritania or in South Algeria.

The OMI-AI values were extracted for the pixels corresponding to
the four AERONET sites (locations indicated in Fig. 1, black dots) and
the 8 surrounding pixels. A square of 3×3 OMI-AI pixels is thus aver-
aged for each site, every day, for the period 2005–2008 (after 2009
the OMI sensor suffers from raw anomalies). Within those 9 pixels,
the average AI is computed for AI higher than 0.2 to avoid cloud
contamination (Torres et al., 2002).

2.2. Aerosol optical thickness

AERONET is an aerosol network constituted of autonomous sun
photometers (Holben et al., 1998) deployed over more than 500
ground-based stations throughout the world. Within the AERONET/
PHOTONS component in West Africa, four stations have been selected
based on the temporal depth of their data sets and their common
time-period with the OMI-AI (Fig. 1). There are two sites in Mali
(Cinzana and Agoufou), one site in Burkina Faso (Ouagadougou) and
one site in Niger (Banizoumbou). The period covered by the selected
data sets is 2005–2009, except in Ouagadougou, for which the period
is reduced to 2005–2007 (January). For the sun photometers of these
sites, the irradiance (W/m2) are measured in five spectral bands (440,
675, 870, 940, and 1020 nm) in order to retrieve the aerosol optical
thickness (AOT) and the Angstrom exponent (α), at a 15-min
time-step during the day. In this study, we consider the AOT at the
440 nm, which is the closest wavelength from UV (referred to as
AOT440 in the following) and the α440/870 representative of an average
aerosol spectral dependency according to the Angstrom law between
440 nm and 870 nm. The current study is based on level 2 AOT440 and
α440/870, which are high-quality AERONET products corrected for clouds.
Fig. 2 illustrates the dailymeanAERONET L2AOT440 andα440/870 data sets
in Banizoumbou (Niger) in 2006. The AOT440 presents a clear seasonal
cycle (Fig. 2a), with high daily values (reaching 4) in AOT440 from
March to June, low values (below 1) from July to November, and inter-
mediate values (1 to 2) from December to February. A dust outbreak
is characterized by high AOT values associated with low Angstrom expo-
nents (Pinker et al., 2001). Theα440/870 ranges from−0.1 to 1.3 (Fig. 2b).
On the 8th of March 2006, α440/870 reaches 0.2 when the yearly AOT440
maximum of 2006 is recorded. From February to June, it is lower than
0.5 (threshold on Fig. 2a and b), which clearly indicates the presence of
coarse particles like the Saharan dust. On the contrary, α440/870 is gener-
ally greater than 0.5 from July to January, indicating the presence of finer
particles (Haywood et al., 2008). In particular, in December and January,
the AOT is impacted by the presence of carbonaceous aerosols emitted
from biomass burning (Ogunjobi et al., 2008). A threshold of 0.5 on
α440/870 (Fig. 2a) is efficient to distinguish situations where mineral
dust is dominant (Smirnov et al., 2000). For Banizoumbou, Fig. 2b high-
lights that high AOT440 values (>1) are associated with dust particles,
as they present a low spectral dependency (i.e., α440/870b0.5), whereas
the AOT440 between 0 and 1 may be associated with a mixture of large
dust and fine particles. Those behaviors are typical of the Sahelian
stations (Holben et al., 2001) and are observed at the three other selected
sites (not shown).

In our analysis, we compare the satellite retrievals (i.e., OMI-AI) to
the coincident ground-based AOT440 measured by the sun photome-
ters. The AOT440 is first extracted at the closest satellite overpass time
±1 h. The average of the AOT440 values is computed only if a minimum
of two AOT440 measurements were available in 1 h (stability criteria).
Then, in order to test if the OMI-AI is representative of the AOT440
measured during the day, the AOT440 was extracted at the satellite
overpass time ±5 h. The average of the AOT440 values was computed
only if a minimum of ten AOT440 measurements were available during
these 5 h (stability criteria). For our comparisons, we use the α440/870

threshold of 0.5 to distinguish the mineral dust events from the cases
influenced by other aerosol species.

2.3. PM10 concentration measurements

The atmospheric concentrations of particulate matter lower than
10 μm in diameter (PM10) have been acquired since January 2006 in the
frame of the AMMA program at three Sahelian stations (Marticorena et
al., 2010). The stations (Fig. 1, red squares) are located along the main
dust transport pathway towards the Atlantic Ocean (near 13°N), in
Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) composing
the Sahelian Dust Transect (SDT). They are all equipped with AERONET/
PHOTONS sun photometers. Note that the data from the site of M'Bour
are not considered here because the aerosol concentrations are affected
by oceanic influences and anthropogenic aerosol sources; furthermore
meningitis outbreaks seldom affect Senegal.

The PM10 concentration is determined at a 5-min time-step by a ta-
pered element oscillating microbalance (TEOM) instrument equipped
with a PM10 inlet (Marticorena et al., 2010). Fig. 3 presents the PM10

cycle measured in Banizoumbou in 2006 at different time-steps: the
monthly scale highlights the annual cycle, while weekly/daily scales
are more suitable for the impact analysis. The PM10 seasonal cycle pre-
sents similarities with that of AOT440 (Fig. 2a). Low values (below
100 μg/m3) are observed from July to November, and intermediate
values (100 μg/m3 to 1000 μg/m3) from December to June. Extremely
high PM10 concentrations are monitored in this region and three main

image of Fig.�1


Fig. 2. a) Daily variation of AOT440 (black line) and α440/870 (gray line) retrieved from AERONET/PHOTONS sun photometers at Banizoumbou (Niger) in 2006. The red line is the monthly
average of AOT440 and the gray line shows the threshold of theAngstromexponent at 0.5; b) scatter plot of dailyα440/870 versusdailyAOT440 at Banizoumbou (Niger) in 2006. (For interpretation
of the references to color in this figure, the reader is referred to the web version of this article.)
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peaks are observed in Fig. 3: in December and in March during the
core of the dry season due to regional dust transport; and in June at
the beginning of the wet season due to local mesoscale convective
system (Marticorena et al., 2010). The choice of the time-step is essential
to focus on a specific process, for instance concentration reaches
Fig. 3. PM10 concentrations measured by TEOM in μg/m3 for different average steps (daily:
(For interpretation of the references to color in this figure, the reader is referred to the web
3410 μg/m3 for the daily average (in June), 1046 μg/m3 for the weekly
average (in March), 407 μg/m3 for the monthly average (in March);
but concentration reaches 4812 μg/m3 at a 5-min time-step (in June;
not shown in Fig. 3). To compare OMI-AI with PM10 data sets, we use
the same temporal averages as for ground-based AOT440 except that a
black line/weekly: blue line/monthly: red line) during 2006 in Banizoumbou (Niger).
version of this article.)

image of Fig.�2
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supplementary 24-hour average is computed in order to investigate the
importance of diurnal variations (no criterion on the number of avail-
able measurements per hour is applied).

2.4. Meningitis data set

The weekly surveillance of the meningococcal meningitis is made
by theWorld Health Organization (WHO). A data set of the number of
“suspected” cases recorded in the meningitis belt over three years
(2005 to 2007) already used in Agier et al. (2013), has been used in
this study. The national incidence (referred as “NI” in the following)
is this number of cases divided by the population. Recently, this
data set has been used to investigate the link between climate factors
and meningitis outbreaks in Mali (Sultan et al., 2005), Burkina Faso,
and Niger (Yaka et al., 2008).

2.5. Statistical methodology

This analysis only uses descriptive statistics; the scatter plot of the
OMI-AI with ground-based data sets (AOT440 or PM10) is character-
ized by a distribution ellipse. After the standardization of the two
data sets: (X−meanX)/stdX and (Y−meanY)/stdY (std stands for
standard deviation), the main axis is obtained by minimizing the
orthogonal distance to the regression line. The orthogonal regression
or major axis regression (i.e., the slope and intercept of this line) is
calculated instead of the ordinary least square because it is more suit-
able for remotely sensed measurements (Cohen et al., 2003). This
method involves the uncertainties of both variables, and it allows
describing the scatter plot at each station as explained by Ayers (2001)
in the context of PM10 measurement for air quality. The correlation
coefficient reflects the noisiness of the linear relationship, defined as
R=covXY/(stdX∗stdY), X and Y being respectively the OMI-AI and the
AOT440 or the PM10 time-series. The significance threshold is obtained
based on a Monte-Carlo test, it consists in 1000 random permutations
Fig. 4. Scatter plot between OMI-AI and AOT440 extracted at the satellite overpass time ±1 h
c) Ouagadougou (Burkina Faso). d) Banizoumbou (Niger). The linear regression standing for du
of the data and 1000 random R computed: the significance threshold
is the percentile 95 (i.e., the 950th highest value). This is more ade-
quate than the classical Bravais–Pearson significance test regarding
the autocorrelation of the time-series used in the current study (Mann
et al., 1998).

3. Results

3.1. Analysis of the OMI-AI/AOT440 relationship

3.1.1. Influence of the Angstrom exponent
In the Sahel mineral dust can be mixed with other aerosols, in par-

ticular with carbonaceous aerosols from biomass burning in the be-
ginning of the dry season (Haywood et al., 2008). Here a threshold
of 0.5 for α440/870 (Section 2.2) is used to distinguish mineral dust
cases from mixed aerosol situations. Fig. 4 presents the scatter plot
between OMI-AI and AOT440 considering every common day of the
period 2005–2008 in Cinzana, Agoufou and Banizoumbou and the
period 2005–2006 in Ouagadougou. The number of “dusty” days is
approximately the same for the different sites (between 800 and 900)
except in Ouagadougou for which the studied period is restricted to
2005–2006 (about 200 points). The correlation coefficients between
OMI-AI and AOT440 are always significant. They range from 0.6 in
Cinzana to 0.7 in Agoufou, Banizoumbou and Ouagadougou. These
results are in agreement with previous studies performed between
the TOMS-AI and the AOT from AERONET (Hsu et al., 1999; Torres et
al., 2002). It is interesting to note that the slopes of the linear regres-
sions slightly vary from East to West, being greater in Cinzana (1.98)
than in Banizoumbou (1.47), while Agoufou and Ouagadougou show
intermediate values (1.89 and 1.77 respectively). Considering the cases
corresponding to “all aerosols” (gray symbols and lines) with the influ-
ence of both dust and biomass burning particles adds about 20% of data
at each site. These cases generally correspond to low AOT440 and
OMI-AI values, so their weight in the linear regression may be weak.
for every common day of the period 2005–2009 in a) Cinzana (Mali). b) Agoufou (Mali).
st aerosols (all aerosols) is indicated in black (gray).

image of Fig.�4


Table 2
Annual and dry season slope and intercept of the linear regression between OMI-AI and
AOT440 extracted at the satellite overpass time ±1 h for the whole year and considering
only the core of the dry season (i.e., from January to March).

Whole year Core dry season

Slope Intercept Slope Intercept

Cinzana 2.03 0.59 1.63 0.82
Agoufou 1.92 0.72 1.63 0.87
Ouagadougou 1.78 0.38 1.60 0.53
Banizoumbou 1.53 0.76 1.22 0.94
All sites 1.78 0.69 1.44 0.87
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The correlation coefficients betweenOMI-AI andAOT440 for “all aerosols”
cases are slightly higher than those obtained for the “dust” situations,
and all are significant (0.62 in Cinzana, 0.70 in Ouagadougou, 0.68 in
Banizoumbou, and 0.72 in Agoufou). For the four sites, the slopes are
very close to those previously obtained for the “dust” cases. The influence
of the aerosol type, as inferred from the Angstrom exponent, can be con-
sidered as limited. This seems to be due to the higher frequency of “dust”
cases compared to mixed aerosol cases (the latter representing about
20%), and the highest aerosol loads are related to the “dust” cases. This
result evidences that the influence of other aerosol types than dust on
OMI-AI can be neglected in the Sahel.

3.1.2. Seasonality
Correlation coefficients between OMI-AI and AOT440 are computed

considering every common day of the whole year, and every common
day during the core of the dry season (Table 1). For the two periods at
all four sites, the correlation coefficients are significant and comparable
(between 0.62 and 0.73). Table 2 presents the slopes and intercepts of
the linear regressions; for the whole year (the core of the dry season)
the slopes vary from the East: 1.53 (1.22) in Banizoumbou to the
West: 2.03 (1.63) in Cinzana. For a given OMI-AI, the AOT440 is higher
during the core of the dry season than during the whole year because
AI from OMI better captures the dust events moving at high alti-
tude than the dust events moving close to the surface (Mahowald &
Dufresne, 2004; De Graaf et al., 2005). During the dry season, the dust
events which flow at relatively low altitude (Cavalieri et al., 2010) are
retrieved by OMI with a weaker AI signal and the slopes of the major
axis regression are all lower. Overall, these results confirm that the
OMI-AI is significantly related to the AOT440, whatever the period of
the year.

3.1.3. OMI-AI representativity of daily integrated AOT440
As a spatial integration, we use 8 OMI pixels surrounding the pixel

of every sun photometer station (Section 2.1). This average of OMI-AI
is then compared to the temporally AOT440 averaged: (i) at ±1 h
around the satellite overpass time, (ii) at ±5 h around the satellite
overpass time. The correlation coefficients (Table 3) between the
OMI-AI and the AOT440 are almost the same (about ≈0.7) when con-
sidering the daily average (±5 h) compared to ±1 h overpass and
the slopes remain stable (not shown). The lowest correlation (0.62)
is obtained at the overpass time for Cinzana; it increases to 0.65 at
the daily average. For each site, the major axis regression parameters
(slopes and intercepts) are similar at a 5% error confidence interval
from the overpass time to the daily average. Thus, at each site and
for each period, the correlation coefficients are high enough to con-
sider that the OMI-AI is representative of the daily mean AOT440.

3.1.4. AOT440 as a proxy of PM10

AOThave already beenused as an estimate of the PM10 at ground level
(Pelletier et al., 2007; Péré et al., 2009; Yahi et al., 2011) in several places
of the world, but mainly in urban environments. Some of these studies
(Pelletier et al., 2007; Yahi et al., 2011) used hierarchical classification
and clustering to improve the relationship between the AOT and the sur-
face concentration by distinguishing different meteorological patterns.
Table 1
Annual and seasonal correlation coefficients between OMI-AI and AOT440 extracted at the
satellite overpass time ±1 h for the whole year and considering only the core of the dry
season (i.e., from January to March).

Whole year Core dry season

R N R N

Cinzana 0.62 995 0.65 584
Agoufou 0.72 1027 0.69 538
Ouagadougou 0.70 218 0.71 125
Banizoumbou 0.68 1055 0.73 603
All sites 0.66 3295 0.69 1850
Such studies have not yet been achieved in the Sahel, partly due to the
lack of surface aerosol concentration measurements. In this region, the
relationship is expected to vary with the time of day, and also between
the dry and wet seasons because the altitude of the dust layer changes.
Table 4 presents the correlation coefficients between the AOT440 and
PM10 concentrations temporally averaged over the entire year at different
time-steps: (i) at ±1 h around the satellite overpass time (“overpass”),
(ii) at ±5 h around the satellite overpass time (“day”), (iii) at ±12 h
around the satellite overpass time (“24 h”), and (iv) over a week
(aweekly average of the daily values). When increasing the integration
time from 1 h to 1 week, the correlation coefficients remain stable
(R≈0.60) in Cinzana. In particular, no difference is observed between
the ±5 h (“day”) and the 24 h (day+night) concentration averages.
In Banizoumbou, the correlation coefficients decrease from the 5-hour
average (i.e., daytime only) to the 24-hour average (i.e., daytime and
nighttime) from 0.68 to 0.44. This suggests that the influence of the
diurnal dust cycle is stronger in Banizoumbou than in Cinzana. By fo-
cusing on the core of the dry season, an improvement of the correlation
coefficient is observed for every temporal average, especially for the
weekly average in Banizoumbou from 0.64 to 0.82 and in Cinzana
from 0.79 to 0.93. Finally, the use of the daily or weekly averages
gives comparable correlations to those obtained with the hourly aver-
ages at the OMI overpass time in Cinzana and Banizoumbou. These
results suggest that in the Sahel, the AOT can be used as an estimate
of the PM10 at the ground level, especially at a weekly time-step during
the core of the dry season.

3.2. Suitability of the OMI-AI for the investigation of dust impact
on meningitis

3.2.1. Analysis of the OMI-AI/PM10 relationship
The aerosol concentrations (PM10) have been temporally averaged

and compared with the daily OMI-AI at the stations of Banizoumbou
(Niger) and Cinzana (Mali) since 2006 (Table 5) for the whole year.
The correlation coefficients between the OMI-AI and PM10 at the time
of the satellite overpass (or at a daily time-step) are weaker compared
to those obtained with the AOT440 (Table 5 versus Table 3): 0.34 versus
0.62 (overpass time) and 0.36 versus 0.65 (daily time-step) in Cinzana;
0.40 versus 0.68 (overpass time) and 0.37 versus 0.69 (daily time-step)
in Banizoumbou. It shows that the OMI-AI is a better indicator of the
vertically integrated dust amount than of the surface concentrations.
This result was somehow expected, as both the OMI-AI and AOT440
Table 3
Correlation coefficients between OMI-AI and AOT440 extracted at the satellite overpass
time ±1 h (overpass column) and extracted at the satellite overpass time ±5 h (column
“day”) for the whole year.

Overpass Day

R N R N

Cinzana 0.62 995 0.65 995
Agoufou 0.72 1027 0.73 1027
Ouagadougou 0.70 218 0.70 218
Banizoumbou 0.68 1055 0.69 1055
All sites 0.66 3295 0.68 3295



Table 4
Correlation coefficients between AOT440 and PM10concentrations temporally averaged
at ±1 h around the satellite overpass time (column “overpass”), at ±5 h around the
satellite overpass time (column “day”), at ±12 h around the satellite overpass time
(column “24 h”), at a weekly time-step for the whole year.

Overpass Day 24 h Weekly

R N R N R N R N

Cinzana 0.60 799 0.58 813 0.59 813 0.64 151
Banizoumbou 0.81 771 0.68 776 0.44 776 0.79 144
All sites 0.73 1570 0.64 1589 0.46 1589 0.73 295
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parameters are optical parameters integrated over the atmospheric
column, contrary to PM10 which results from surface measurements.
At a 24-hour time-step, the OMI-AI/PM10 correlation is weaker in
Banizoumbou (0.27) than in Cinzana (0.36), which may be explained
by a stronger diurnal cycle of the concentrations in Banizoumbou than
in Cinzana, as previously shown by the PM10/AOT440 relationship
(Section 3.1.4). In order to progress in our evaluation of the suitability
of the OMI-AI for health impact studies, and specifically meningitis
epidemics, we now examine a longer time-step.

3.2.2. OMI-AI at the 1-week epidemiological time-step
As the meningitis epidemiological reports are available at a weekly

time-step, we compared the OMI-AI to the AOT440 and the PM10 at this
time-step. An improvement of these relationships is expected at aweek-
ly time-step because it reduces the range of variation; i.e., the standard
deviation of both OMI-AI and AOT440 (or PM10) is lower than at a daily
time-step. The goal of this section is to quantify this improvement.
Fig. 5 presents the scatter plots of the OMI-AI versus the AOT440 and ver-
sus the PM10 in Cinzana (Fig. 5a and b), and Banizoumbou (Fig. 5c and
d). From the daily to the weekly time-step, the correlation coefficients
increase by 10% for the OMI-AI/AOT440 and 30% for the OMI-AI/PM10

relationship. In Cinzana, the correlation coefficient between the weekly
OMI-AI and the AOT440 reaches 0.70 compared to 0.62 at a daily time-
step and in Banizoumbou, it reaches 0.78 compared to 0.68 at a daily
time-step. The slopes of the linear regression show the same East–
West gradient with consistent values compared to the daily time-step
at both sites. Regarding the correlation coefficients between the weekly
OMI-AI and the PM10, they reach 0.49 in Cinzana (compared to 0.36 at a
daily time-step), and 0.45 in Banizoumbou (compared to 0.37 at a daily
time-step). As a conclusion, the temporal integration of the aerosol pa-
rameters over one week significantly increases the agreement between
the remotely sensed aerosol index and the ground-based measure-
ments. More specifically, the OMI-AI is more representative of the aero-
sol concentrations at the surface at the weekly scale than at the daily
scale. This may be explained by the reduction of the PM10 concentration
range (i.e., std PM10) when increasing the averaging period (Fig. 3). Fur-
thermore, the weekly time-step is in agreement with the typical dura-
tion of the dust storms which range from 1 to 6 days with mean of
2.5 days (Marticorena et al., 2010).

The final step of the comparison is to examine the capability of the
OMI-AI to reproduce the annual cycle of themineral dust content derived
from the AOT440 and PM10. It is particularly important to evaluate
Table 5
Correlation coefficient between OMI-AI and PM10 concentration temporally averaged
at ±1 h around the satellite overpass time (column “overpass”), at ±5 h around the
satellite overpass time (column “day”), at ±12 h around the satellite overpass time
(column “24 h”) for the whole year.

Overpass Day 24 h

R N R N R N

Cinzana 0.34 942 0.36 961 0.36 961
Banizoumbou 0.40 890 0.37 896 0.27 896
All sites 0.36 1832 0.35 1857 0.27 1857
whether the weekly OMI-AI data set provides a consistent calendar com-
pared to ground-based aerosol measurements. Indeed the influence of
dust on meningitis is suspected to occur mainly during the increasing
phase of the epidemics in the first trimester of the year. Theweekly stan-
dardized mean annual cycles presented in Fig. 6 are computed from the
values of Fig. 5 by subtracting themean from eachweekly value, then di-
viding by the standard deviation. For each variable, a clear annual cycle is
observed at bothCinzana andBanizoumbou,mainly positive at the begin-
ning of the year and crossing zero in July. From August to December the
three parameters stay in agreement whereas three periods could be
distinguished from January to July: from January to March, the core of
the dry season; from April to May, the transition to the wet season;
from June to July, the wet season settlement. During the first trimester,
the aerosol layer is located close to the surface and a PM10 maximum
is obtained before week 10 (early March), which is consistent with
dust-laden winds coming from the North-East (Harmattan winds) at
this period. From April to early May, the AOT440 maximum happens
generally between week 13 to week 18. Finally, from late May to June
the OMI-AImaximumoccurs aroundweek 25when the PM10 concentra-
tions are already low. Consequently, the dust transport moves in higher
altitudes and seems to be disconnected from the surface. All these behav-
iors are shared by the two stations in average for the period 2006–2008.
Counter intuitively for the OMI-AI and PM10 relationship, the correlation
coefficient during the core of the dry season (0.35 in Cinzana and 0.41 in
Banizoumbou) is lower than during the wet season (0.64 in Cinzana and
0.62 in Banizoumbou). This means that the linear assumption is not
verified during the first trimester, which may be due to the high dust
variability at this period of the year, better captured by the PM10 surface
measurements. Moreover, the slope of the OMI-AI and PM10 relationship
is expected to change along the year. Nevertheless, the weekly time-step
improves the correlations between the OMI-AI and the PM10 concentra-
tion (Table 5 compared to Fig. 5). On average, during the core of the dry
season, the OMI-AI and PM10 both experience an increasing phase. This
agreement is not retrieved for the other periods of the year, andespecially
from April to June (Fig. 6): the OMI-AI tends to increase when the PM10

decreases.
Fig. 7 presents the OMI-AI, AOT440, and PM10 time-series for the

individual years 2006, 2007 and 2008. When looking at the PM10

(“the ground truth”) for each year considered, the same events are re-
trieved by both stations during the first trimester. Banizoumbou
monitored usually stronger dust episodes than Cinzana, which is con-
sistent with the distance to the sources and the wind direction
(Nord-East). This difference seems less clear for the AOT440 even
though the AOT440 time-series are phased with those of PM10. The
OMI-AI identifies the dust events both in Cinzana and Banizoumbou
during the core of the dry season and this is associated with moderate
values (≈2). The other important result for the OMI-AI is that it
systematically experiences high values from April to June (from 2 to 3),
and it decreases from July to September (from 2 to 1). Both in
Banizoumbou and in Cinzana, an intense dust peak is recorded on the
8th of March 2006 (Fig. 7a and b) due to a continental dust storm
(Slingo et al., 2006). This outstanding event leads to the yearlymaximum
for the sun photometers (AOT440) and TEOM measurement (PM10),
which also appears in the cycles of the Fig. 6a and b. For the OMI-AI how-
ever, this event leads to a local maximum in the first trimester but with
only a moderate value considering the entire year. To conclude, focusing
on the onset–peak period of the meningitis epidemics (January–March),
the weekly dynamics of the OMI-AI, AOT440 and PM10 are consistent,
whereas during the second trimester of the year (April–June), the
OMI-AI increases, losing gradually the surface representativity.

3.3. A case study: OMI-AI and meningitis epidemics

The Harmattan winds have been proved to play on the timing of the
meningitis epidemics (Sultan et al., 2005) and, to a lesser extent, their
intensities (Yaka et al., 2008). Recently, the desert dust has been



Fig. 5. (Left) scatter plot betweenweekly OMI-AI and AOT440 for the period 2006–2008 (whole year) in: a) Cinzana (Mali); c) Banizoumbou (Niger). (Right) scatter plot betweenweekly
OMI-AI and PM10 concentrations for the period 2006–2009 in: b) Cinzana (Mali); d) Banizoumbou (Niger).
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shown to impact on the meningitis incidence in West Africa (Martiny &
Chiapello, in press). The onset of the meningitis season has been shown
to be tightly related to dust flowing close to the surface from February to
April because each meningitis peak has been shown to be preceded by a
dust peak with a lead-time (ranging from 0 to 2 weeks). The most com-
mon explanation is that extreme air dryness combined with high dust
Fig. 6. Comparison between OMI-AI (blue), AOT440 (dashed blue) and PM10 concentration (r
a) Cinzana (Mali). b) Banizoumbou (Niger) (For interpretation of the references to color in
loads that persists until the endof the dry season candamage the pharyn-
geal mucosa. As a result, the colonizing meningococci are more likely to
invade the epithelium (Mueller & Gessner, 2010). High dust loads
persisting over weeks or extreme dust events may thus favor themenin-
gococcal to pass into theblood. According to this hypothesis dust could be
considered as a trigger of the epidemics. However, othermechanisms are
ed) standardized mean annual cycles for the period 2006–2008 at a weekly time-step in
this figure, the reader is referred to the web version of this article.).
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also possible which impact the bacteria carriage ratio by affecting the
airborne dryness (thus the transmission likelihood), by preceding viral
infection, by increasing the cough or people grouping during the night
(e.g., Greenwood et al., 1984; Thomson et al., 2006, 2009; Mueller &
Gessner, 2010). Another hypothesis is that mineral dust may bring iron
into the bacteria, a nutrient required for bacteria growth (Jordan &
Saunders, 2009) but there is only a little proportion of soluble iron in
mineral dust (Zhu et al., 1997). Due to the difficulty in separating all
these effects, dust load could be seen as a proxy of the intensity of all
those mechanisms.

Until now, we have demonstrated the ability of the OMI-AI to repre-
sent the weekly ground dust concentration during the dry season. As-
suming dust plays a role of trigger of the epidemics, a delay is expected
between the dust concentration and the meningitis incidence increases.
This time-lag should range from one to several weeks, due to the in-
cubation time of the bacteria (Stephens et al., 2007). To test this hy-
pothesis, the mean annual cycles of the national incidence (NI) is
compared with the one of the OMI-AI in Burkina Faso, Mali or Niger.
OMI-AI values have been extracted and averaged at a national scale.
The NI has been correlated with the national AI with several time-lags
from 0 to 4 weeks over two periods: (C1) trimester 1 (January–March)
roughly corresponding to onset–maximum peak dates; (C2) trimesters
1 and 2 (January–June) roughly corresponding to the whole meningitis
season. Our previous results have suggested that during the trimester
1, the OMI-AI is better linked to dust conditions at the surface, whereas
the vertical distribution makes the OMI-AI more influenced by higher
altitude aerosol layers during the trimester 2.

The important result shown by this analysis is that the determina-
tion coefficient (R2) reaches high values in the three countries for a
constant time-lag between the NI and the OMI-AI (Table 6).When con-
sidering the C1 period, R2 is high for time-lags ranging from 0 to
2 weeks and maximum for a 1-week time-lag in the three countries
(R2=0.73 in Burkina Faso, R2=0.80 in Niger and R2=0.89 in Mali).
The loss of consistence is clear for the period C2 (i.e., R2 is null). The
sensitivity to the number of weeks used to estimate the correlation for
Fig. 7. Comparison between OMI-AI (blue), AOT440 (dashed blue) and PM10 concentration (re
(Niger) (For interpretation of the references to color in this figure, the reader is referred to the
C1 and C2 is very low (i.e., ±2 weeks), reinforcing our conclusion.
There is a clear decrease of the correlation between C1 and C2 which
occurs around week 18 (i.e., early May). This suggests that April could
be included in the C1 period. However, our previous results suggest
that April must be carefully considered because this is the period of
the highest AOT440.

The increase of mineral aerosols as represented by the OMI-AI
seems to match with the increasing phase of the epidemic season
(C1). This preliminary analysis is consistent with the existence of a
link between the OMI-AI and NI until March with a 1-week time-lag
at the scale of the country. This encourages further investigations at
a finer spatial scale such as the district scale. The 1-week time-lag
suggests synchronization because dust floating close to the surface
(period C1) may play a role in the increase of the meningitis cases,
likely in association with specific meteorological conditions. For
instance, Martiny and Chiapello (in press) illustrated the particular
role of dust during the dry season on the onset and the intra-
seasonal variability of the meningitis season. As a next step, the AI
as well as other atmospheric parameters (such as humidity, temper-
ature and wind) need to be taken into account to continue previous
analyses made at the national scale (Martiny & Chiapello, in press;
Sultan et al., 2005; Yaka et al., 2008) in order to better understand
and forecast dust impacts on the onset, maximum and ending of the
epidemics.

4. Discussion and conclusions

This study is dedicated to the evaluation of the suitability of the
aerosol index (AI) from the ozone monitoring instrument (OMI) for
dust impact studies on health inWest Africa. Satellite data sets are pow-
erful observation tools that can help to better understand the complex
relationships between climate, dust and diseases, as they are available
every day at a global scale. Over four years of OMI-AI data along with
ground-based AERONET sun photometer AOT440, and TEOM PM10

have been analyzed over the Sahel. The main question addressed by
d) for the period 2006–2008 at a weekly time-step in a) Cinzana (Mali). b) Banizoumbou
web version of this article.).

image of Fig.�7


Table 6
Analysis of the OMI-AI/NI relationships: determination coefficients R2 between the
OMI-AI and national incidence (NI) considering different time-lags (from 0 to 4 weeks)
and two distinct periods (trimester 1: “C1 column”; trimesters 1 and 2: “C2 column”).

Burkina Faso Niger Mali

C1 C2 C1 C2 C1 C2

Lag 0 0.61 0.14 0.74 0.01 0.82 0.00
Lag 1 0.73 0.15 0.80 0.00 0.89 0.00
Lag 2 0.68 0.12 0.77 0.01 0.87 0.00
Lag 3 0.55 0.07 0.70 0.02 0.71 0.00
Lag 4 0.43 0.03 0.68 0.03 0.56 0.01
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this analysis is: How to use the OMI-AI to investigate mineral dust im-
pacts on health, and specifically meningitis epidemics, in the Sahel?

First of all, the OMI-AI is consistent with the AOT440 measurements
acquired on four Sahelian sites, for the whole year as well as for the
core of the dry season (i.e., January–March), at the time of the satellite
overpass, at the daily or at the weekly time-step. This means that the
OMI-AI is significantly related to the AOT440, which represents the
vertically integrated dust load. Secondly, the ground-based AOT440 has
been shown to be related to the PM10 at the time of the OMI overpass,
at the daily or at the weekly time-step. The correlations between the
OMI-AI and PM10 in Niger (Banizoumbou) and Mali (Cinzana) explain
less than 30% of the variance at a daily time-step. An important benefit
for the variance is observed for the correlation between the OMI-AI
and the PM10 concentrations from the daily to the 3-day average
(i.e., up to 30%) and slightly increase from the 3-day to theweekly aver-
age, in agreement with an average dust event duration of 2.5 days
(Marticorena et al., 2010).

Focusing now on the OMI-AI, AOT440 and PM10 annual cycle com-
parison, for the two PM10 stations, the maximum date happens in late
March for the PM10, in April–early May for the AOT440 and in June for
the OMI-AI. During the core of the dry season, at both locations the
PM10 maximum happens during the same week every year due to
strong Harmattan winds. The transition to the wet season starts in
April when the temperature is the highest and the surface pressure
is the lowest associated with convection (Lavaysse et al., 2009). It
coincides with the highest AOT440 and high OMI-AI values, thus a
maximum of the vertically integrated dust transported over the
Sahel. The ratio of AOT440 divided by PM10 increases, suggesting a
change in the aerosol vertical distribution compared to the core of
the dry season. Then in May, the pre-onset of the monsoon happens
when the inter-tropical front (the discontinuity in the wind direction)
moves northward reaching the Sahel (Sultan et al., 2003). This front
pushes in altitude the Harmattan flux and creates the Saharan Air
Layer, leading to dust events in altitude captured by the OMI-AI
time-series and not by the PM10 measurements. Therefore, from April
to June, the OMI-AI surface representativity decreases gradually until
the monsoon flux arrival from the South. When the monsoon is clearly
established, the OMI-AI remains high until July, whereas PM10 concen-
trations are already low. Thus, there is a temporal shift between the
maxima of the annual cycles in OMI-AI, AOT440 and PM10. However,
during the first trimester of the year, the strong dust events recorded
in the PM10 measurements, lead to local maxima in the time-series
of the OMI-AI at Banizoumbou and Cinzana (Fig. 7). This means that
the OMI-AI in the core of the dry season (the increase phase of the
meningitis season) is able to reproduce the weekly variability of the
AOT440 and the PM10 measurements and to detect the dust events
when the dust concentrations at the surface are the highest. This is a
very important result in terms of dust impact studies on health. An
effect of the high dust concentration is expected after several weeks
(e.g., De Longueville et al., 2010; Mueller & Gessner, 2010). Martiny
and Chiapello (in press) suggest that dust may play a role on the
onset of themeningitis season and its variability, especially from January
to March. During this period, our results show that it is possible to use
OMI-AI to investigate the links between dust and meningitis. Indeed,
for this period, the OMI-AI can be considered as representative of
the weekly surface dust concentrations. This is satisfactory given the
weekly time-step of the available epidemiological data sets. Even though
the variance of PM10 explained by the OMI-AI is lower than 50%, the
timing of the dust concentration increase is well captured by the
OMI-AI. For the period January–March, (i.e., from the onset to the maxi-
mumpeak date), the correlation between the OMI-AI and themeningitis
incidence at the national scale suggests a oneweek delay between the in-
crease of dust load and of the epidemics. This delaymay signify that dust
acts as a trigger of the epidemics. The elaboration of a dust persistence
index based on the OMI-AI at the district scale should be possible. Such
an index could be used to investigate the effect of dust integrated over
the whole dry season. The numerical model of the emission/transport/
deposition of dust such as CHIMERE (Menut et al., 2009; Schmechtig et
al., 2011), could also be tested for specific skills needed, as it has been
done for ozone and mortality (Valari et al., 2011). The OMI-AI could
also be included in meningitis early warning systems, such as those cur-
rently operational in Burkina Faso and Niger based on climate variables
only, which explain 25% of the variance in meningitis (Yaka et al., 2008).

Finally, our study has been achieved using the PM10 and AOT440
measurements acquired at two Sahelian sites more than 1000 km apart.
A difference in the slope of theOMI-AI/AOT440 (or OMI-AI/PM10) relation-
ships is observed from West to East which can be explained by a lower
altitude of the dust layer near the sources (Engelstaedter & Washington,
2007b). The differences noticed in the weekly PM10 time-series between
Banizoumbou and Cinzana are also observed by the OMI-AI during the
core of the dry season. Our analysis is based on a spatially averaged
OMI-AI (3×3 pixels) around the stations, showing the ability of the
OMI-AI to provide relevant information on the dust surface concentration
at a 0.75° resolution. The dust events are recorded at the two stations,
suggesting a regional to continental scale of the dust events with several
days of duration (Marticorena et al., 2010). Thus, spatial patterns of dust
at the weekly time-step may concern a larger area than 0.75° with
weak local differences inside. This suggests that the coarser resolution of
the TOMS-AI would not prevent its use to detect dust episodes and
monitor the weekly variability during the core of the dry season in the
Sahel. The advantage of the TOMS-AI time series is to cover two important
epidemics in 1986 and in 1996/1997 as a decadal cycle of the meningitis
epidemics has been shown in West Africa (Broutin et al., 2007). Prelimi-
nary comparisons between TOMS-AI and AOT440 provided similar corre-
lation coefficients than with the OMI-AI. A combination of homogenized
TOMS-AI and OMI-AI time-series would allow the investigation of
the link between dust and meningitis epidemics over decades (TOMS:
1978–1993 and 1996–2005; OMI: 2004–2009).

To conclude, this study highlights the fact that the satellite aerosol
products can improve our knowledge of the complex relationships be-
tween dust and diseases during the relevant period of high dust load,
in regions such as the Sahel where stations measuring dust surface
concentrations are rare.
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