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Comet 67P/Churyumov-Gerasimenko sheds dust
coat accumulated over the past four years
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Comets are composed of dust and frozen gases. The ices are mixed
with the refractory material either as an icy conglomerate1, or as an
aggregate of pre-solar grains (grains that existed prior to the for-
mation of the Solar System), mantled by an ice layer2,3. The pres-
ence of water-ice grains in periodic comets is now well established4–6.
Modelling of infrared spectra obtained about ten kilometres from
the nucleus of comet Hartley 2 suggests that larger dust particles are
being physically decoupled from fine-grained water-ice particles that
may be aggregates7, which supports the icy-conglomerate model. It
is known that comets build up crusts of dust that are subsequently
shed as they approach perihelion8–10. Micrometre-sized interplan-
etary dust particles collected in the Earth’s stratosphere and certain
micrometeorites are assumed to be of cometary origin11–13. Here we
report that grains collected from the Jupiter-family comet 67P/
Churyumov-Gerasimenko come from a dusty crust that quenches
the material outflow activity at the comet surface14. The larger grains
(exceeding 50 micrometres across) are fluffy (with porosity over
50 per cent), and many shattered when collected on the target plate,
suggesting that they are agglomerates of entities in the size range of
interplanetary dust particles. Their surfaces are generally rich in
sodium, which explains the high sodium abundance in cometary
meteoroids15. The particles collected to date therefore probably re-
present parent material of interplanetary dust particles. This argues
against comet dust being composed of a silicate core mantled by or-
ganic refractory material and then by a mixture of water-dominated
ices2,3. At its previous recurrence (orbital period 6.5 years), the comet’s
dust production doubled when it was between 2.7 and 2.5 astronom-
ical units from the Sun14, indicating that this was when the nucleus
shed its mantle. Once the mantle is shed, unprocessed material starts
to supply the developing coma, radically changing its dust compon-
ent, which then also contains icy grains, as detected during encoun-
ters with other comets closer to the Sun4,5.

Since August 2014, the ESA Comet Rendezvous Mission, Rosetta16,17,
has been in orbit around the Jupiter-family comet 67P/Churyumov-
Gerasimenko, monitoring the evolution of the comet’s nucleus, near-
nucleus region, and inner coma as a function of increasing solar flux
input, as the comet moves towards the Sun. As part of these studies, the
COmetary Secondary Ion Mass Analyser (COSIMA)18 onboard Rosetta
is collecting comet grains from the near-nucleus region and the inner
coma onto special target plates19, which are subsequently imaged and
compositionally investigated by time-of-flight secondary ion mass spec-
trometry using an indium ion source. The grain collection commenced

at a heliocentric distance of 3.57 astronomical units (where 1 AU is the
average Sun–Earth distance), when the comet was still at low activity.
The optical analysis of the grains captured on the target plates at dis-
tances beyond 3 AU shows that most have fragmented upon capture and
a large fraction of grains more than 50mm across have shattered.
Figure 1a shows a typical example of a dust particle that has crumbled
into a rubble pile upon collection, while Fig. 1b shows an example of a
dust particle that has shattered into a loosely connected cluster with a
wide range of sub-component sizes. These two types of feature are re-
presentative of most large particles collected at less than 30 km from the
nucleus during the first three months of the orbital phase. Given that the
dust particles hit the target with a relatively low velocity (1–10 m s21)19,
their tensile strength must be very low. From the inertial deceleration
forces upon grain capture the strength of the material can be approxi-
mated, and a first rough estimate relevant for the present fragmenta-
tion process is on the order of 1,000 Pa.

The disintegration of cometary grains in the coma is often described
as resulting from an icy grain component that evaporates when exposed
to solar radiation, producing a secondary source for comet gaseous
material20,21. A dusty secondary source can, however, also be attributed
to certain organic grains that are not mantled by water ice22. The coma
dust returned by Stardust23 featured various types of grain, including
specimens that had disintegrated along the deceleration tracks when
entering the aerogel (the ultralight porous gel in which the grains were
captured) at velocities of the order of 6 km s21, and hence were com-
posed of very fine or thermally unstable components24,25. The morpho-
logy of the grains collected by COSIMA supports the presence of solely
refractory material. A grain composed of an ice–mineral mixture would
not shatter at low-velocity collection; instead, the icy part of such a
grain would evaporate very shortly after collection, leaving one or more
voids in the particle that remains on the target plate. Grains composed
of (nearly) pure water-ice would evaporate at or shortly after collection
and create a dark signature on the target plate. At the scale of the
COSIMA image resolution (pixel size is 14 mm), there is no hint of
volatiles having left the grains after collection. In other words, there is
no indication of an ice–mineral mixture, or of pure icy grains hitting
the target. This is in contrast to cometary grains remotely observed, or
collected before the Rosetta mission.

The most important difference between the Stardust and COSIMA
grains is the heliocentric distance at which they were captured. The Star-
dust samples were collected during a comet fly-by at 1.85 AU, whereas
the grains collected by COSIMA were dragged off the nucleus of a
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re-approaching comet at heliocentric distances greater than 3 AU (as
67P/Churyumov-Gerasimenko returned from its aphelion passage at
5.68 AU having spent about four years at a distance beyond 4 AU). These
COSIMA grains therefore come from a dusty layer that has built up over
those four years, when the comet was so far from the Sun that the solar
radiation was no longer able to create a gas drag that could efficiently
remove the dust. The dust therefore remained on the surface, building
up an ice-free, fluffy layer, below which lies an ice–dust mixture. When
the comet returned to regions of higher solar irradiation the evapora-
tion rate of the volatile gases underneath the dust layer increased again,
lifting the particles from the dry upper dust layer into the inner coma,

and leaving their original dusty cohabitants (dust frozen together with
the gas) behind. This left-behind dust replenishes the existing dusty layer
from below, thereby maintaining its thickness in a quasi-steady state
until the solar radiation is high enough that the amount of dust re-
moved from the upper layer is larger than the new volatile-free dust
produced underneath. As a consequence, the dusty layer will disappear
over time and fresh material will come to the surface. The transition may
be gradual but could be violent if there is a hard zone under the dusty
layer (as may be indicated by the re-bounce of the Philae lander) below
which high gas pressures are building up. From the increase in dust
production rate observed telescopically in 2008 (ref. 14) we infer that
the dusty layer was lost at some stage between 2.7 AU and 2.5 AU. That
orbital section will be reached again during the present recurrence of
the comet between 24 December 2014 and 20 January 2015, so the loss
of the dusty layer has probably already occurred.

The mass spectra of the surface of the COSIMA grains collected
beyond 3 AU show a high abundance of sodium. Preliminary values ob-
tained after calibration26 are as high as 0.8, normalized to Mg 5 1. For
comparison, the Na abundances (Mg 5 1) for comet 81P/Wild-2 are
0.13 (collected in aerogel) and 0.2 (collected on aluminium foil)27, 0.1 6

0.06 for comet 1P/Halley28, and 0.55 for CI chondrites29. The Na abund-
ance observed in Perseid and Leonid meteoroids is a factor of 1.5 higher
than the chondritic value15, which fits very well with the value measured
by COSIMA. Furthermore, the fluffiness of the COSIMA grains sug-
gests that they would fragment with time after release into the coma.
From remote observations, such fragmentation of coma grains has reg-
ularly been proposed30. Therefore we conclude that the high Na abund-
ance measured by COSIMA, combined with the fluffiness of the grains,
supports the hypothesis that these grains represent the parent popu-
lation of interplanetary dust particles in meteor streams of cometary
origin.

Beyond 3 AU, COSIMA has not collected any of the dust that is mixed
with sublimating ice, but rather the dust that is present in the upper ice-
free dust layer. When the comet loses its fluffy mantle, it is expected that
the properties of the grains collected will be very different from those
of the grains currently under analysis, which show the properties of
‘space-weathered’ comet refractory material. The fresh material is likely
to be a mixture of ice and dust, and its analysis should provide the de-
tailed structure of this mixture. However, when the comet returns to
the outer Solar System, a new dusty mantle will form as the upper layer
again becomes free of ice. The formation of such a mantle was con-
sidered for re-occurring comets8 and detailed models exist for short-
period comet nuclei9,10. The physical processes and timescales of these
models are consistent with assumptions made about the nucleus size,
orbit and so on for 67P/Churyumov-Gerasimenko. Therefore, the grains
collected from this comet provide direct evidence for the existence of its
dusty mantle and also an indication of the structure of dust mantles in
short-period comets.
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Figure 1 | Dust particles. a, An example of a dust particle that crumbled into a
rubble pile when collected. The particle was collected at a nucleus distance
of 10–20 km, between 25 and 31 October 2014, with corresponding heliocentric
distance range 3.11–3.07 AU. The image was obtained with two different grazing
illumination conditions (top image illuminated from the right, bottom
image from the left). The brightness is presented in logarithmic scale to
emphasize the shadows, which indicate that the altitude above the target
reaches about 100mm. As the particle lies 4.2 mm below the centre of the
collecting target, the shadows are tilted with regard to the horizontal direction.
b, An example of a dust particle that shattered when collected. The distance,
time of collection, illumination conditions, and logarithmic scale are the
same as for a. The shadows indicate that the altitude above the target
reaches about 60mm. The two grains visible on the right are not part of the
shattered cluster.
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